Table of Laplace Transforms

In the table below c is a constant. The functions f and g are piecewise continuous functions of exponential type; F and G denote their Laplace transforms respectively. The Heavyside function $u_0(t)$ is defined to be equal to 1 for t > 0 and equal to 0 for t < 0, and δ_0 denotes the δ -"function" at 0. The restrictions on s in the Laplace transforms are omitted.

	Function	Laplace transform	
scale:	f(ct)	$\frac{1}{c}F(\frac{1}{c})$	c > 0
	$\frac{1}{c}f(\frac{1}{c})$	F(ct)	c > 0
shift:	$u_0(t-c)f(t-c)$	$e^{-cs}F(s)$	c > 0
	$e^{ct}f(t)$	F(t-c)	c > 0
diff:	$f^{(n)}(t)$	$s^{n}F(s) - (f^{(n-1)}(0) + sf^{(n-2)}(0) + \dots + s^{n-1}f(0)$	
	$(-t)^n f(t)$	$F^{(n)}(s)$	
convolve	$(f * g)(t) = \int_0^t f(t - \tau)g(\tau)d\tau$	F(s)G(s)	
	1	$\frac{1}{s}$	
	δ_0	1	

Others can be derived from the Laplace of f = 1 and the rules above. For example:

$$t^n e^{ct}$$
 $\frac{n!}{(s-c)^{n+1}}$ c real or complex

Writing c = ib, with n = 0 or n = 1 then taking real and imaginary parts:

$$\frac{s}{s^2 + b^2}$$
sin bt
$$\frac{b}{s^2 + b^2}$$
t cos bt
$$\frac{s^2 - b^2}{(s^2 + b^2)^2}$$
t sin bt
$$\frac{2bs}{(s^2 + b^2)^2}$$

A linear combination that is useful in dealing with partial fractions:

$$\sin bt - bt \cos bt \qquad \qquad \frac{2b^3}{(s^2 + b^2)^2}$$