Uniqueness of the Laplace Transform

A natural question that arises when using the Laplace transform to solve differential equations is: Can two different functions have the same Laplace transform (in which case we could not distinguish these two functions by just looking at the Laplace transform).

A piecewise continuous function f is said to be of exponential type a, where a is a real number, if there is a constant $M<\infty$, so that

$$
\left|\frac{f(t)}{e^{a t}}\right| \leq M
$$

for all $t>N$. In other words, f doesn't grow faster that $e^{a t}$ in this sense. If f is a piecewise continuous function of exponential type a, then the Laplace transform $\mathcal{L} f(s)$ exists for $s>a$ (Exercise). As mentioned in class, we identify two piecewise continuous functions if they agree except possibly at the points of discontinuity.

Theorem. Suppose f and g are piecewise continuous on $[0, \infty)$ and exponential type a. If $\mathcal{L} f(s)=$ $\mathcal{L} g(s)$ for $s>a$ then $f(t)=g(t)$ for $t \geq 0$.

Proof. If $\mathcal{L} f=\mathcal{L} g$ then $\mathcal{L}(f-g)=0$. So it is enough to prove that if $\mathcal{L} f(s)=0$ for $s>a$ then $f(t)=0$ for all $t \geq 0$. Fix $s_{0}>a$ and make the change of variables in the Laplace transform of $u=e^{-t}$. Then for $s=s_{0}+n+1$ we obtain

$$
\begin{equation*}
0=\mathcal{L} f(s)=\int_{0}^{\infty} f(t) e^{-n t} e^{-s_{0} t} e^{-t} d t=\int_{0}^{1} u^{n}\left(u^{s_{0}} f(-\ln u)\right) d u \tag{1}
\end{equation*}
$$

$n=0,1,2, \ldots$ Let $h(u)=u^{s_{0}} f(-\ln u)$. Then h is piecewise continuous on $(0,1]$ and

$$
\lim _{u \rightarrow 0} h(u)=\lim _{t \rightarrow \infty} e^{-s_{0} t} f(t)=0
$$

because $s_{0}>a$. Thus if we define $h(0)=0$, then h is piecewise continuous and satisfies

$$
\int_{0}^{1} h(u) p(u) d u=0
$$

for every polynomial p by (1). This implies that if g has a power series expansion which converges uniformly on $[0,1]$ then

$$
\begin{equation*}
\int_{0}^{1} h(u) g(u) d u=0 . \tag{2}
\end{equation*}
$$

If h is not the zero function then replacing h with $-h$ if necessary, we can find a $u_{0} \in(0,1)$ and an interval $J=\left[u_{0}-c, u_{0}+c\right] \subset[0,1]$ and an $c_{1}>0$ so that $h \geq c_{1}$ on J.

Consider the function $g(u)=\frac{1}{d} e^{-\left(\frac{u-u_{0}}{d}\right)^{2}}$. If $d>0$ then g has a power series expansion which converges uniformly on $[0,1]$, so that (2) holds.

Set

$$
\begin{equation*}
I_{1}=\int_{J} g(u) d u=\int_{u_{0}-c}^{u_{0}+c} g(u) d u=\int_{-c / d}^{c / d} e^{-t^{2}} d t \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\int_{u_{0}+c}^{1} g(u) d u=\int_{c / d}^{\left(1-u_{0}\right) / d} e^{-t^{2}} d t \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{3}=\int_{0}^{u_{0}-c} g(u) d u=\int_{-u_{0} / d}^{-c / d} e^{-t^{2}} d t . \tag{5}
\end{equation*}
$$

Set $A=\int_{-\infty}^{\infty} e^{-t^{2}} d t$. Then $A>0$ and given $\varepsilon>0$, there is a $\delta>0$ so that if $0<d \leq \delta$ then

$$
I_{1} \geq \frac{A}{2}, \quad 0 \leq I_{2} \leq \varepsilon, \quad \text { and } \quad 0 \leq I_{3} \leq \varepsilon
$$

Because $h \geq c_{1}>0$ on J and $|h| \leq N$, for some $N<\infty$,

$$
\int_{J} h(u) g(u) d u \geq c_{1} A / 2>0
$$

and

$$
\left|\int_{[0,1] \backslash J} h(u) g(u) d u\right| \leq 2 N \varepsilon .
$$

and so

$$
\int_{0}^{1} h(u) g(u) d u \geq c_{1} \frac{A}{2}-2 N \varepsilon>0
$$

provided $\varepsilon<\frac{c_{1} A}{4 N}$, contradicting (2). This proves that h is the zero function and so by the definition of f, we must have f equal to the zero function, proving the theorem.

The idea for constructing the function g that violates (2), was to make it non-negative and essentially 0 off the interval J and have integral over J large, yet still be approximable by polynomials.

Don Marshall 2/2016

