Uniqueness of the Laplace Transform

A natural question that arises when using the Laplace transform to solve differential equations is: Can two different functions have the same Laplace transform (in which case we could not distinguish these two functions by just looking at the Laplace transform).

A piecewise continuous function f is said to be of **exponential type** a, where a is a real number, if there is a constant $M < \infty$, so that

$$\left| \frac{f(t)}{e^{at}} \right| \le M,$$

for all t > N. In other words, f doesn't grow faster that e^{at} in this sense. If f is a piecewise continuous function of exponential type a, then the Laplace transform $\mathcal{L}f(s)$ exists for s > a (Exercise). As mentioned in class, we identify two piecewise continuous functions if they agree except possibly at the points of discontinuity.

Theorem. Suppose f and g are piecewise continuous on $[0, \infty)$ and exponential type a. If $\mathcal{L}f(s) = \mathcal{L}g(s)$ for s > a then f(t) = g(t) for $t \ge 0$.

Proof. If $\mathcal{L}f = \mathcal{L}g$ then $\mathcal{L}(f - g) = 0$. So it is enough to prove that if $\mathcal{L}f(s) = 0$ for s > a then f(t) = 0 for all $t \ge 0$. Fix $s_0 > a$ and make the change of variables in the Laplace transform of $u = e^{-t}$. Then for $s = s_0 + n + 1$ we obtain

$$0 = \mathcal{L}f(s) = \int_0^\infty f(t)e^{-nt}e^{-s_0t}e^{-t}dt = \int_0^1 u^n \left(u^{s_0}f(-\ln u)\right)du,\tag{1}$$

 $n=0,1,2,\ldots$ Let $h(u)=u^{s_0}f(-\ln u)$. Then h is piecewise continuous on (0,1] and

$$\lim_{u \to 0} h(u) = \lim_{t \to \infty} e^{-s_0 t} f(t) = 0,$$

because $s_0 > a$. Thus if we define h(0) = 0, then h is piecewise continuous and satisfies

$$\int_0^1 h(u)p(u)du = 0,$$

for every polynomial p by (1). This implies that if g has a power series expansion which converges uniformly on [0,1] then

$$\int_0^1 h(u)g(u)du = 0. \tag{2}$$

If h is not the zero function then replacing h with -h if necessary, we can find a $u_0 \in (0,1)$ and an interval $J = [u_0 - c, u_0 + c] \subset [0,1]$ and an $c_1 > 0$ so that $h \ge c_1$ on J.

Consider the function $g(u) = \frac{1}{d}e^{-(\frac{u-u_0}{d})^2}$. If d > 0 then g has a power series expansion which converges uniformly on [0,1], so that (2) holds.

Set

$$I_1 = \int_J g(u)du = \int_{u_0 - c}^{u_0 + c} g(u)du = \int_{-c/d}^{c/d} e^{-t^2} dt$$
 (3)

and

$$I_2 = \int_{u_0+c}^1 g(u)du = \int_{c/d}^{(1-u_0)/d} e^{-t^2} dt$$
 (4)

and

$$I_3 = \int_0^{u_0 - c} g(u) du = \int_{-u_0/d}^{-c/d} e^{-t^2} dt.$$
 (5)

Set $A = \int_{-\infty}^{\infty} e^{-t^2} dt$. Then A > 0 and given $\varepsilon > 0$, there is a $\delta > 0$ so that if $0 < d \le \delta$ then

$$I_1 \ge \frac{A}{2}$$
, $0 \le I_2 \le \varepsilon$, and $0 \le I_3 \le \varepsilon$.

Because $h \ge c_1 > 0$ on J and $|h| \le N$, for some $N < \infty$,

$$\int_{J} h(u)g(u)du \ge c_1 A/2 > 0$$

and

$$\left| \int_{[0,1]\setminus J} h(u)g(u)du \right| \le 2N\varepsilon.$$

and so

$$\int_0^1 h(u)g(u)du \ge c_1 \frac{A}{2} - 2N\varepsilon > 0$$

provided $\varepsilon < \frac{c_1 A}{4N}$, contradicting (2). This proves that h is the zero function and so by the definition of f, we must have f equal to the zero function, proving the theorem.

The idea for constructing the function g that violates (2), was to make it non-negative and essentially 0 off the interval J and have integral over J large, yet still be approximable by polynomials.

Don Marshall 2/2016