
Uniqueness of the Laplace Transform

A natural question that arises when using the Laplace transform to solve differential equations

is: Can two different functions have the same Laplace transform (in which case we could not

distinguish these two functions by just looking at the Laplace transform).

A piecewise continuous function f is said to be of exponential type a, where a is a real

number, if there is a constant M < ∞, so that
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for all t > N . In other words, f doesn’t grow faster that eat in this sense. If f is a piecewise

continuous function of exponential type a, then the Laplace transform Lf(s) exists for s > a

(Exercise). As mentioned in class, we identify two piecewise continuous functions if they agree

except possibly at the points of discontinuity.

Theorem. Suppose f and g are piecewise continuous on [0,∞) and exponential type a. If Lf(s) =

Lg(s) for s > a then f(t) = g(t) for t ≥ 0.

Proof. If Lf = Lg then L(f − g) = 0. So it is enough to prove that if Lf(s) = 0 for s > a then

f(t) = 0 for all t ≥ 0. Fix s0 > a and make the change of variables in the Laplace transform of

u = e−t. Then for s = s0 + n+ 1 we obtain

0 = Lf(s) =

∫ ∞

0

f(t)e−nte−s0te−tdt =

∫ 1

0

un (us0f(− lnu)) du, (1)

n = 0, 1, 2, . . . Let h(u) = us0f(− lnu). Then h is piecewise continuous on (0, 1] and

lim
u→0

h(u) = lim
t→∞

e−s0tf(t) = 0,

because s0 > a. Thus if we define h(0) = 0, then h is piecewise continuous and satisfies

∫ 1

0

h(u)p(u)du = 0,

for every polynomial p by (1). This implies that if g has a power series expansion which converges

uniformly on [0, 1] then
∫ 1

0

h(u)g(u)du = 0. (2)

If h is not the zero function then replacing h with −h if necessary, we can find a u0 ∈ (0, 1)

and an interval J = [u0 − c, u0 + c] ⊂ [0, 1] and an c1 > 0 so that h ≥ c1 on J .
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Consider the function g(u) = 1
d
e−(

u−u0

d
)2 . If d > 0 then g has a power series expansion which

converges uniformly on [0, 1], so that (2) holds.

Set

I1 =

∫

J

g(u)du =

∫ u0+c

u0−c

g(u)du =

∫ c/d

−c/d

e−t2dt (3)

and

I2 =

∫ 1

u0+c

g(u)du =

∫ (1−u0)/d

c/d

e−t2dt (4)

and

I3 =

∫ u0−c

0

g(u)du =

∫ −c/d

−u0/d

e−t2dt. (5)

Set A =
∫∞

−∞
e−t2dt. Then A > 0 and given ε > 0, there is a δ > 0 so that if 0 < d ≤ δ then

I1 ≥
A

2
, 0 ≤ I2 ≤ ε, and 0 ≤ I3 ≤ ε.

Because h ≥ c1 > 0 on J and |h| ≤ N , for some N < ∞,

∫

J

h(u)g(u)du ≥ c1A/2 > 0

and
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≤ 2Nε.

and so
∫ 1

0

h(u)g(u)du ≥ c1
A

2
− 2Nε > 0

provided ε < c1A
4N

, contradicting (2). This proves that h is the zero function and so by the definition

of f , we must have f equal to the zero function, proving the theorem. �

The idea for constructing the function g that violates (2), was to make it non-negative and

essentially 0 off the interval J and have integral over J large, yet still be approximable by polyno-

mials.
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