Final Exam Math 135 Winter 2016

Name:

Student Number:

1. Suppose the path of a particle as a function of time is given by

$$
r(t)=(x(t), y(t), z(t))=\left(\cos t, \sin t, t^{2}\right) .
$$

As a function of t, find:
a. The velocity vector
b. The acceleration vector
c. The speed
d. $s(t)=$ the distance travelled from time 0 to time t.
(you may leave your answer as an integral).
e. The curvature κ
f. The unit tangent vector T
g. The binormal B
h. The principal normal N
i. The angle between the osculating plane and the x, y plane.
(recall that the angle between two planes equals the angle between their normal vectors).
2. Using Laplace transforms, solve the initial value problem:

$$
y^{\prime \prime}+4 y^{\prime}+13 y=e^{-t^{2}}
$$

with $y(0)=0$ and $y^{\prime}(0)=0$. You may leave your answer as an explicit integral.
3. a. Find the recurrance relation for the coefficients of the power series solution around $x_{0}=0$ for the differential equation

$$
\begin{equation*}
\left(1+x+x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+12 y=0, \tag{1}
\end{equation*}
$$

where $y(0)=1$ and $y^{\prime}(0)=2$.
b. Use your answer to find the Taylor polynomial (about $x_{0}=0$) of degree 4 for y.
c. Give an interval on which the series solution in part a is guaranteed to converge.
d. Use our existence and uniqueness theorem to prove that there are two solutions y_{1} and y_{2} to equation (1) which are power series expansions about the point $x_{0}=5$ (instead of $x_{0}=0$) satisfying $y_{1}(5)=1, y_{1}^{\prime}(5)=0, y_{2}(5)=0$ and $y_{2}^{\prime}(5)=1$, and find an explicit disk centered at $x_{0}=5$ on which these power series converge.
e. Prove that there exists constants c_{1} and c_{2} so that

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

on an interval containing 0 , where y is the solution from part a and y_{1} and y_{2} are the solutions in part d.

