One way that sequences are often defined is by recursion. More precisely, suppose that $f : \mathbb{R} \to \mathbb{R}$ is a function and x_0 is a real number. Then we may defined a sequence $\{x_n\}$ iteratively by the formula

$$x_{n+1} = f(x_n)$$
 for $n = 0, 1, 2, \ldots$

The purpose of this handout, is to give a criterion for such a sequence to converge.

We begin with some definitions. Throughout this handout, $\Omega \subset \mathbb{R}$ denotes a set of one of the forms [a, b] for a < b, $[a, \infty)$, $(-\infty, b]$, or \mathbb{R} ; and f denotes a function of the form

 $f:\Omega\to\Omega$

(i.e. Ω is the domain of f and the range of f is contained in Ω .

Definition 1. The function f is said to be a *contraction map* if there is a real number K with 0 < K < 1 for which

 $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in \Omega$.

Lemma 1. If f is a contraction map then f is continuous on Ω .

Proof. Exercise.

Definition 2. A point $x_0 \in \Omega$ is called a *fixed point* of f if $f(x_0) = x_0$.

Lemma 2. A contraction map has at most one fixed point.

Proof. *Exercise.*

Theorem. Let $f : \Omega \to \Omega$ be a contraction map and let $x_0 \in \Omega$. Then the sequence $\{x_n\}$ defined inductively by

 $x_{n+1} = f(x_n)$

is a Cauchy sequence. Moreover, the limit $x_{\infty} = \lim_{n \to \infty} x_n$ is a fixed point of f.

We will prove the theorem through a series of lemmas.

Lemma 3. Suppose $x_n \to x_\infty$. Then x_∞ is a fixed point.

Proof. First note since Ω is either a closed interval or all of \mathbb{R} , then $x_{\infty} \in \Omega$. Hence $f(x_{\infty})$ is defined. (Why?)

To see that $f(x_{\infty}) = x_{\infty}$. Choose any $\epsilon > 0$. Then there is an integer N > 0 such that $|x_n - x_{\infty}| < \epsilon$ for all $n \ge N$. Choose any $n \ge N$, and notice that $x_{n+1} = f(x_n)$. Now use the triangle inequality to estimate as follows:

$$|f(x_{\infty}) - x_{\infty}| = |f(x_{\infty}) - f(x_n) + f(x_n) - x_{\infty}| \le |f(x_{\infty}) - f(x_n)| + |f(x_n) - x_{\infty}| \le K |x_{\infty} - x_n| + |x_{n+1} - x_{\infty}| < 2\epsilon.$$

Since ϵ was arbitrary, it follows that $f(x_{\infty}) = x_{\infty}.\Box$

Lemma 4. The sequence $\{x_n\}$ is bounded.

Proof. Let $A = |x_1 - x_0|$. Observe that for any n > 1,

$$|x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})| \le K |x_{n-1} - x_{n-2}|.$$

Repeating this step n-times yields the inequality

$$|x_n - x_{n-1}| \le AK^{n-1}$$
for all n .

Thus,

$$|x_n - x_0| = |x_n - x_{n-1} + x_{n-1} - x_{n-2} + x_{n-2} + \dots + (x_1 - x_0)|$$

$$\leq |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_1 - x_0|$$

$$\leq (K^{n-1} + K^{n-2} + \dots + K + 1)A \leq \frac{A}{1 - K}.$$

Let R = A/(1-K), then $|x_n - x_0| \le R$ for all n. \Box

Lemma 5. The sequence $\{x_n\}$ is Cauchy.

Proof. Choose any $\epsilon > 0$. Since 0 < K < 1, there is an integer N > 0 for which

$$2RK^N < \epsilon$$
.

where R is as in the proof of the previous lemma.

We claim that $|x_n - x_m| < \epsilon$ for all $n, m \ge N$.

To see this, note first that by definition of R,

$$|x_{n-N} - x_0| \le R$$
 and $|x_{m-N} - x_0| \le R$.

Hence, by the triangle inequality, $|x_{n-N} - x_{m-N}| \leq 2R$. Now observe that

$$x_n = (f \circ f \circ \cdots \circ f)(x_{n-N})$$
 and $x_m = (f \circ f \circ \cdots \circ f)(x_{m-N})$.

(Here f is composed with itself *N*-times). Therefore,

$$|x_m - x_n| \le K^N |x_{m-N} - x_{n-N}| \le 2RK^N < \epsilon$$
,

which is what we needed to prove. \Box