• Routine Problems:

§14.1: #12 #16 #57; **§14.2:** #36; **§14.3:** #33 #34 #39; **§14.4:** #5 #19; **§14.5:** #2 #35 #44 #50 #52.

Page 747: #28 #29 #35 #38 #46 #48.

- To hand in:
 - (1) A vector-valued function **G** is called an *antiderivative* for **f** on [a, b] provide that **G** is continuous on [a, b] and $\mathbf{G}'(t) = \mathbf{f}(t)$ for all $t \in (a, b)$.
 - (a) Show that if **f** is continuous on [a, b] and **G** is an antiderivative for **f** on [a, b] then

$$\int_{a}^{b} \mathbf{f}(t) \, dt = \mathbf{G}(b) - \mathbf{G}(a)$$

(b) Show that if **f** is continous on [a, b] and **F** and **G** are antiderivatives for **f** on [a, b] then

 $\mathbf{F} = \mathbf{G} + \mathbf{C}$

for some constant vector **C**.

(2) The force due to gravity is given by the constant vector

$$\mathbf{F} = -mg\,\mathbf{k}\,,$$

where we have chosen a coordinate system where $-\hat{\mathbf{k}}$ points toward the center of the Earth.

Let $\mathbf{r} = \mathbf{f}(t)$ denote the trajectory of an object of mass m moving under the influence of gravity, with no air resistance. Let \mathbf{r}_0 and \mathbf{v}_0 denote the position and velocity of the object at time t = 0. Show that

$$\mathbf{f}(t) = \mathbf{r}_0 + t \, \mathbf{v}_0 - \frac{1}{2} g t^2 \, \hat{\mathbf{k}} \,.$$

Hint: Recall that $m\mathbf{f}''(t) = \mathbf{F}$.

(3) Three objects move in space according to the equations

$$\mathbf{r} = \mathbf{r}_1(t)$$
 $\mathbf{r} = \mathbf{r}_2(t)$ and $\mathbf{r} = \mathbf{r}_3(t)$,

where t denotes time. Let A(t) denote the area of the triangle formed by the three objects. Suppose that

$$\mathbf{r}_1(0) = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}} \qquad \mathbf{r}_2(0) = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}} \qquad \mathbf{r}_3(0) = \hat{\mathbf{k}}$$
$$\mathbf{r}_1'(0) = \hat{\mathbf{i}} \qquad \mathbf{r}_2'(0) = \hat{\mathbf{j}} \qquad \mathbf{r}_3'(0) = \hat{\mathbf{k}}$$

Compute A'(0).

- (4) Let $\mathbf{r} = \mathbf{r}(s)$ be the arc length parametrization of a simple curve. Suppose that $\|\mathbf{r}(s)\| = 1$ for all s and that $\mathbf{r}(s)$ has continuous first and second derivatives.
 - (a) Show that the three vector-valued functions $\mathbf{r} = \mathbf{r}(s)$, $\mathbf{T} = \mathbf{T}(s) =: \frac{d\mathbf{r}(s)}{ds}$, and $\mathbf{U} = \mathbf{U}(s) =: \mathbf{r}(s) \times \mathbf{T}(s)$ form an oriented frame (i.e. that they are mutually orthogonal unit vectors and that the triple scalar product $(\mathbf{r} \times \mathbf{T}) \cdot \mathbf{U}$ is positive).
 - (b) Show that there is a scalar function $\beta(s)$ such that the following equations are satisfied:

$$\frac{d\mathbf{r}}{ds} = \mathbf{T}, \quad \frac{d\mathbf{T}}{ds} = -\mathbf{r} + \beta \mathbf{U}, \quad \frac{d\mathbf{U}}{ds} = -\beta \mathbf{T}$$

(c) Now let **T**, **N**, **B** denote the Frenet frame for the curve. Show that

$$\mathbf{N} = \frac{-\mathbf{r} + \beta \mathbf{U}}{\sqrt{1 + \beta^2}}$$

and from that conclude that $\kappa = \sqrt{1 + \beta^2}$.

(d) Finally, use part (c) to find a formula for the torsion τ of the curve in terms of β and its derivative β' . From this, conclude that $\tau(s) = 0$ if and only if $\beta'(s) = 0$.