- Routine Problems:

§14.1: \#12 \#16 \#57;
§14.2: \#36;
§14.3: \#33 \#34 \#39;
§14.4: \#5 \#19;
§14.5: \#2 \#35 \#44 \#50 \#52.

Page 747: \#28 \#29 \#35 \#38 \#46 \#48.

- To hand in:
(1) A vector-valued function \mathbf{G} is called an antiderivative for \mathbf{f} on $[a, b]$ provide that \mathbf{G} is continuous on $[a, b]$ and $\mathbf{G}^{\prime}(t)=\mathbf{f}(t)$ for all $t \in(a, b)$.
(a) Show that if \mathbf{f} is continuous on $[a, b]$ and \mathbf{G} is an antiderivative for \mathbf{f} on $[a, b]$ then

$$
\int_{a}^{b} \mathbf{f}(t) d t=\mathbf{G}(b)-\mathbf{G}(a)
$$

(b) Show that if \mathbf{f} is continous on $[a, b]$ and \mathbf{F} and \mathbf{G} are antiderivatives for \mathbf{f} on $[a, b]$ then

$$
\mathbf{F}=\mathbf{G}+\mathbf{C}
$$

for some constant vector \mathbf{C}.
(2) The force due to gravity is given by the constant vector

$$
\mathbf{F}=-m g \hat{\mathbf{k}},
$$

where we have chosen a coordinate system where $-\hat{\mathbf{k}}$ points toward the center of the Earth.
Let $\mathbf{r}=\mathbf{f}(t)$ denote the trajectory of an object of mass m moving under the influence of gravity, with no air resistance. Let \mathbf{r}_{0} and \mathbf{v}_{0} denote the position and velocity of the object at time $t=0$. Show that

$$
\mathbf{f}(t)=\mathbf{r}_{0}+t \mathbf{v}_{0}-\frac{1}{2} g t^{2} \hat{\mathbf{k}} .
$$

Hint: Recall that $m \mathbf{f}^{\prime \prime}(t)=\mathbf{F}$.
(3) Three objects move in space according to the equations

$$
\mathbf{r}=\mathbf{r}_{1}(t) \quad \mathbf{r}=\mathbf{r}_{2}(t) \quad \text { and } \mathbf{r}=\mathbf{r}_{3}(t),
$$

where t denotes time. Let $A(t)$ denote the area of the triangle formed by the three objects. Suppose that

$$
\begin{array}{lll}
\mathbf{r}_{1}(0)=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}} & \mathbf{r}_{2}(0)=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}} & \mathbf{r}_{3}(0)=\hat{\mathbf{k}} \\
\mathbf{r}_{1}^{\prime}(0)=\hat{\mathbf{i}} & \mathbf{r}_{2}^{\prime}(0)=\hat{\mathbf{j}} & \mathbf{r}_{3}^{\prime}(0)=\hat{\mathbf{k}}
\end{array}
$$

Compute $A^{\prime}(0)$.
(4) Let $\mathbf{r}=\mathbf{r}(s)$ be the arc length parametrization of a simple curve. Suppose that $\|\mathbf{r}(s)\|=1$ for all s and that $\mathbf{r}(s)$ has continuous first and second derivatives.
(a) Show that the three vector-valued functions $\mathbf{r}=\mathbf{r}(s), \mathbf{T}=\mathbf{T}(s)=: \frac{d \mathbf{r}(s)}{d s}$, and $\mathbf{U}=$ $\mathbf{U}(s)=: \mathbf{r}(s) \times \mathbf{T}(s)$ form an oriented frame (i.e. that they are mutually orthogonal unit vectors and that the triple scalar product $(\mathbf{r} \times \mathbf{T}) \cdot \mathbf{U}$ is positive).
(b) Show that there is a scalar function $\beta(s)$ such that the following equations are satisfied:

$$
\frac{d \mathbf{r}}{d s}=\mathbf{T}, \quad \frac{d \mathbf{T}}{d s}=-\mathbf{r}+\beta \mathbf{U}, \quad \frac{d \mathbf{U}}{d s}=-\beta \mathbf{T}
$$

(c) Now let $\mathbf{T}, \mathbf{N}, \mathbf{B}$ denote the Frenet frame for the curve. Show that

$$
\mathbf{N}=\frac{-\mathbf{r}+\beta \mathbf{U}}{\sqrt{1+\beta^{2}}}
$$

and from that conclude that $\kappa=\sqrt{1+\beta^{2}}$.
(d) Finally, use part (c) to find a formula for the torsion τ of the curve in terms of β and its derivative β^{\prime}. From this, conclude that $\tau(s)=0$ if and only if $\beta^{\prime}(s)=0$.

