11.6: $5,9,13,21,37$
11.7: 7, 13, 21, 38
12.1: $13,14,21,22,23,24 ;$
12.2: $1,7,13,15,17,18,29,32,36$;
12.3: $1,3,11,15,27,29,35 ;$
12.4: $1,3,4,15,32,41,48$
12.5: $2,5,15,27,29,33,35$.

To hand in:
(1) Let $\left\{a_{n}\right\}$ be the sequence defined inductively by $a_{1}=1, a_{n+1}=\frac{1}{a_{n}^{4}+16}$.
(a) Show that $\left\{a_{n}\right\}$ is a Cauchy sequence.
(b) Show that $\left\{a_{n}\right\}$ converges to a solution of the equation $x^{5}+16 x-1=0$.
(c) Show that if $\left\{b_{n}\right\}$ is the sequence defined by $b_{1}=2, b_{n+1}=\frac{1}{b_{n}^{4}+16}$, then $\left\{b_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}$.

Hint: Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=1 /\left(x^{4}+16\right)$.
(2) Show that the equation

$$
x=1+\int_{0}^{x} \frac{\cos (t)}{t^{2}+4} d t
$$

has one and only one solution.
(3) Recall that (by definition) $\lim _{x \rightarrow \infty} f(x)=L$ if and only if for every real number $\epsilon>0$ there is a real number x_{0} such that $|f(x)-L|<\epsilon$ for all $x>x_{0}$.
Prove the following:

$$
\lim _{x \rightarrow \infty} f(x)=L \text { if and only if } \lim _{t \rightarrow 0^{+}} f(1 / t)=L
$$

(4) Show that for any real number c,

$$
\lim _{x \rightarrow \infty}\left(\frac{x+c}{x-c}\right)^{x}=e^{2 c}
$$

(5) Use the hint given in class.

Show that $\int_{2}^{\infty} \frac{d x}{x(\ln (x))^{p}}$ converges if and only if $p>1$.
(b) Show that $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}$ converges and that its sum equals 2.1 to one decimal place (i.e. with an error less than 0.05).
(c) Show that $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)}$ diverges, but that

$$
8.10 \leq \sum_{k=2}^{10^{1000}} \frac{1}{k(\ln k)} \leq 8.83
$$

as you can see, this series diverges very slowly! If you tried to detect the divergence experimentally by adding a few million terms on the computer, you would not succeed.
(6) Determine whether the series $\sum_{k=1}^{\infty} k!\left(\frac{5}{2 k}\right)^{k}$ converges or diverges.

