12.4: $1,3,4,15,32,41,48$
12.5: $2,5,15,27,29,33,35$.
12.6: $1,2,5,9,10,11,13,17 ;$
12.7: 3, 7, 20, 31, 34;
12.8: $1,3,4,5,8,19,27,41,44$.

Routine problems (not to hand in):

- Make use of the material in the notes "Taylor polys" to do the following: For each of the functions below, used the known expansions for $e^{x}, \sin x, \cos x$, and $(1-x)^{-1}$, together with the techniques from the notes to find the 5th order Taylor polynomial (about $a=0$):

$$
\left(x^{2}+1\right) e^{x}, \quad \cos \left(x^{3}\right), \quad \sin \left(x+x^{2}\right), \quad \cos \left(e^{x}-1\right) .
$$

- In each of the following, compute the limit by using Taylor expansions of the numerator and denominator:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin 5 x}, \quad \lim _{x \rightarrow 0} \frac{\sin ^{4} x}{1-\cos \left(x^{2}\right)}
$$

- To hand in:
(1) Problem 66 on page 613 of the text.

Note: There is a typo: $s_{q}=\sum_{k=0}^{q} \frac{1}{k!}$
(2) (a) Find the 4th order Taylor polynomial (about $a=0$) of $\cos (\sin x)$.
(b) Use the result of (a) (not l'Hospital's rule) to compute

$$
\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{2} \sin \left(x^{2}\right)}
$$

(3) Find all values of x for which the following series (a) converges absolutely, (b) converges conditionally:

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n+2}
$$

