These problems should be attempted before class on Tuesday.
Routine problems (not to hand in):
12.9: $1,6,7,9,19$
series handout: $1,2,3,4,5$

Turn in :

1. series handout \#6 (Hint: f behaves like the first non-zero term in its power series expansion near 0 - see problem 4.)
2. Show that $\sum_{k=0}^{\infty} \frac{\sin k}{2^{k}}$ converges. Evaluate it exactly by using the fact that $\sin k=\operatorname{Im}\left(e^{i k}\right)$. $(\operatorname{Im}(a+i b)=b$, the imaginary part of $a+i b$.)
Hint: It will be useful to recall that $\frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}$, (a, b real $)$.
3. Prove the following:
a. The radius of convergence of the power series for $1 /(z-a)$ centered at b is the distance from b to a. Here a and b are complex numbers.
b. The radius of convergence of the power series for $(z-a)^{-k}, k=2,3, \ldots$ centered at b is also equal to the distance from b to a.
c. Definition: A rational function r is a function of the form $r=p / q$ where p and q are polynomials. Prove that a rational function can be written in the form $r=p / q$ where p and q have no common zeros. Hint: fundamental theorem of algebra.
d. Prove that the radius of convergence of the power series for r centered at b is the distance from b to the nearest zero of q. Hint: Use Corollary 3.3 from the Complex Numbers handout last quarter. Part of your proof is that the series does not converge on a disk centered at b of larger radius.
