Hand In: $3.1 \# 14 ; 3.2 \# 22 ; 3.3 \# 18 ; 3.4 \# 12 ; 3.5 \# 17 ; 3.6 \# 10 ; 3.7 \# 12$; plus problem $\# \mathrm{~N}$ at the bottom of this page.

Certainly not all of these will be graded, but I want you to have some practice writing these up carefully.

Other problems:
Section 3.1: 1,6,12,13,14,21
Section 3.2: 1,3,9,13,14,15,17,22
Section 3.3: 2,3,11,18,34,35
Section 3.4: 3,12,21,24
Section 3.5: 3,5,17,30
Section 3.6: 3,10

Section 3.7: 11,12
Section 3.8: 3,5,7
\#N: Consider the initial value problem

$$
x^{\prime \prime}-2 x^{\prime}-x=t \text { with } x(0)=0, x^{\prime}(0)=0
$$

As we discussed in class, this is equivalent to the system of first order differential equations

$$
x^{\prime}=y \text { and } y^{\prime}=x+2 y+t \text { with } x(0)=0, y(0)=0 .
$$

whose solution is the limit of a sequence of Picard iterates, $x_{n}(t), y_{n}(t)$, starting with the initial guess

$$
x_{0}(t)=0 \text { and } y_{0}(t)=0
$$

for all t.
(a) Give the formula expressing $x_{n+1}(t)$ and $y_{n+1}(t)$ in terms of $x_{n}(t)$ and $y_{n}(t)$.
(b) Use the formula in (a) to find the first three Picard iterates $x_{n}(t)$ and $y_{n}(t), n=1,2,3$.

Note: Completing (b) involves a lot of calculation. You need only hand in the result.

