- Routine problems:

Boyce \& DiPrima:
§6.5: 9, 12, 14;
§6.6: 7, 10, 17, 21;
Salas, Hille, \& Etgen:
§13.2: \#40, 41;
§13.3: \# \#33, 39, 40, 43, 45, \#49.
§13.4: \# 29, 36, 37, 42, 46, 47, 48.
§13.5: \# 23, 24, 26, 29, 34, 40.
§13.6: \# 12, 13, 15, 27, 37, 41, 53.

- To hand in: $6.5 \# 12,6.6$ \#21 and
(1) Show that for any vectors \mathbf{a} and \mathbf{b},

$$
|\|\mathbf{a}\|-\|\mathbf{b}\|| \leq\|\mathbf{a}-\mathbf{b}\|
$$

$($ Hint: $\mathbf{a}=(\mathbf{a}-\mathbf{b})+\mathbf{b}$.
(a) Suppose that $\mathbf{a} \cdot \mathbf{b}=0$ and $\mathbf{a} \times \mathbf{b}=\mathbf{0}$. Show that either $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$.
(b) Now suppose that $\mathbf{a} \neq \mathbf{0}$. Show that if \mathbf{c} and \mathbf{d} are vectors for which

$$
\mathbf{a} \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{d} \text { and } \mathbf{a} \times \mathbf{c}=\mathbf{a} \times \mathbf{d} .
$$

Use the result of (a) to prove that $\mathbf{c}=\mathbf{d}$.
(3) Let ℓ_{1} and ℓ_{2} be two skew (i.e. not parallel) line with parameterizations

$$
\ell_{j}: \quad \mathbf{r}(t)=\mathbf{r}_{j}+t \mathbf{d}_{j}, \quad j=1,2
$$

Show that the distance between the lines is given by the formula

$$
\mathrm{d}\left(\ell_{1}, \ell_{2}\right)=\frac{\left|\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) \cdot\left(\mathbf{d}_{1} \times \mathbf{d}_{2}\right)\right|}{\left\|\mathbf{d}_{1} \times \mathbf{d}_{2}\right\|}
$$

