
Math 135A, Winter 2016 Picard Iteration

In this note we consider the problem of existence and uniqueness of solutions of the initial value
problem

y′ = f(t, y) , y(t0) = y0 . (1)

Suppose that y = Y (t) is a solution defined for t near t0. Then integrating both sides of (1) with
respect to t gives

Y (t)− Y (t0) =

∫ t

t0

f(τ, Y (τ)) dτ

which we can rewrite in the form

Y (t) = y0 +

∫ t

t0

f(τ, Y (τ)) dτ (2)

Notice that differentiating both sides of (2) with respect to t yields Equation (1). So Equation (2)
is equivalent to the initial value problem (1).

Picard Iteration. Under certain conditions on f (to be discussed below), the solution of (2) is
the limit of a Cauchy Sequence of functions:

Y (t) = lim
n→∞

Yn(t)

where Y0(t) = y0 the constant function and

Yn+1(t) = y0 +

∫ t

t0

f(τ, Yn(τ)) dτ (3)

Example. Consider the initial value problem y′ = y, y(0) = 1, whose solution is y = et (using
techniques we learned last quarter).

Substituting f(t, y) = y, t0 = 0, and y0 = 1 into (3) gives:

Y1(t) = 1 +

∫ t

0
1 dτ = 1 + t

Y2(t) = 1 +

∫ t

0
(1 + τ) dτ = 1 + t+ t2/2

Y3(t) = 1 +

∫ t

0
(1 + τ + τ2/2) dτ = 1 + t+ t2/2 + t3/6 .

More generally, using Mathematical Induction, one can show that

Yn(t) =
n
∑

k=0

tk

k!
.

Consequently,

lim
n→∞

Yn(t) =

∞
∑

k=0

tk

k!
= et .

Conditions on the function f(t, y). The initial value problem (1) does not always have a unique
solution, for consider the initial value problem

dy

dt
= f(y) , y(0) = 0
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where f(y) =

{

0 for y ≤ 0
√
2y for y ≥ 0.

. Now for any a > 0, consider the function φa : R → R defined as

follows

φa(t) =

{

(t− a)2/2 for t ≥ a

0 for t ≤ a .

By construction, φa satisfies the initial condition φa(0) = 0. It also satisfies the differential equation

φ′a(t) = f(φa(t)) for all t ;

This is clear since
φ′a(t) = 0 = f(0) = f(φa(t)) for t ≤ a ;

and
d(t− a)2/2

dt
= (t− a) =

√

2(t− a)2/2 = f((t− a)2/2) for t ≥ a .

This example shows that we need to impose conditions on f if we want to ensure that (1) has a
unique solution. Suppose that f satisfies the following condition:

Let R be the rectangular region

R = {(t, y) : |t− t0| ≤ a and |y − y0| ≤ b} , for a, b > 0 .

Then

(i) The function f(t, y) is continuous as a function of t for all for all (t, y) ∈ R

(ii) There is a constant K > 0 such that f satisfies the inequality

|f(t, y)− f(t, z)| ≤ K |y − z|

for all (t, y) and (t, z) in R.

A function satisfying (ii) is said to be Lipschitz continuous with respect to y on R.

Theorem (Picard-Lindelöf). Suppose f satisfies conditions (i) and (ii) above. Then for some
c > 0, the initial value problem (1) has a unique solution y = y(t) for |t− t0| < c.

We will prove the Picard-Lindelöf Theorem by showing that the sequence Yn(t) defined by Picard
iteration is a Cauchy sequence of functions.

Set M =Max(t,y)∈R|f(t, y)| and set

c = min

(

a,
b

M
,

1

2K

)

,

and let F be the collection of all continuous functions φ : [t0 − c, t0 + c] → R defined as follows

F = {φ : [t0 − c, t0 + c] → R : φ(t0) = y0 and |φ(t) − y0| ≤ b}
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Lemma.1. Suppose that φ ∈ F . Then the function Φ = T [φ] defined by

Φ(t) = y0 +

∫ t

t0

f(τ, φ(τ)) dτ

is also in F .

Proof. We first have to prove that Φ is well-defined. Set g(t) = f(t, φ(t)). Then

Φ(t) = y0 +

∫ t

t0

g(τ) dτ

If we can show that g is continuous, than it follows that the integral is well-defined. In fact, by the
Fundamental Theorem of Calculus, it follows that Φ is differentiable, and therefore continuous.

Therefore, we have to show that g is continous. To show this, fix t in the interval I = [t0− c, t0+ c],
and choose ǫ > 0. Since f is continuous as a function of its first variable and φ is continuous, there
is a δ > 0 such that the both of the following conditions are satisfied for s ∈ I:

(i) If |s − t| < δ, then |f(s, φ(t))− f(t, φ(t))| < ǫ/2

(ii) If |s− t| < δ, then |φ(s)− φ(t)| < ǫ/(2K)

Therefore, by the triangle inequality, if |s− t| < δ, then

|g(s)− g(t)| = |f(s, φ(s))− f(t, φ(t)| = |f(s, φ(s))− f(s, φ(t)) + f(s, φ(t))− f(t, φ(t))|
≤ |f(s, φ(s))− f(s, φ(t))|+ |f(s, φ(t))− f(t, φ(t))|
≤ K|φ(s)− φ(t)|+ ǫ/2 < Kǫ/(2K) + ǫ/2 = ǫ .

To see that Φ is in F , note that by construction Φ(t0) = y0. Finally notice that |t − t0| ≤ c ≤ a
implies |t− t0| ≤ a. So

|Φ(t)− y0| ≤
∣

∣

∣

∣

∫ t

t0

f(τ, φ(τ)) dτ

∣

∣

∣

∣

≤M |t− t0| ≤Mc ≤M(b/M) = b

�

In light of the lemma we just proved, we may view Picard iteration as a map of the form

T : F → F

Lemma. T satisfies the condition

‖T [φ]− T [ψ]‖ ≤ 1/2‖φ − ψ‖,

for all φ, ψ in F , where ‖β‖ := max|t−t0|<c |β(t)| for β : [t0 − c, t0 + c→ R continuous.
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Proof. Suppose that φ and ψ are functions in F , and compute as follows:

|T [φ](t)− T [ψ](t)| =
∣

∣

∣

∣

∫ t

t0

f(τ, φ(τ)) − f(τ, ψ(τ)) dτ

∣

∣

∣

∣

≤ K

∣

∣

∣

∣

∫ t

t0

φ(τ)− ψ(τ) dτ

∣

∣

∣

∣

≤ K‖φ− ψ‖c

≤ K
1

2K
‖φ− ψ‖ = 1/2‖φ − ψ‖

�

The Picard-Lindelöf Theorem follows from above lemma and Theorem 3 of the handout “Cauchy
Sequences of Functions”.
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