In this note we consider the problem of existence and uniqueness of solutions of the initial value problem

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} . \tag{1}
\end{equation*}
$$

Suppose that $y=Y(t)$ is a solution defined for t near t_{0}. Then integrating both sides of (1) with respect to t gives

$$
Y(t)-Y\left(t_{0}\right)=\int_{t_{0}}^{t} f(\tau, Y(\tau)) d \tau
$$

which we can rewrite in the form

$$
\begin{equation*}
Y(t)=y_{0}+\int_{t_{0}}^{t} f(\tau, Y(\tau)) d \tau \tag{2}
\end{equation*}
$$

Notice that differentiating both sides of (2) with respect to t yields Equation (1). So Equation (2) is equivalent to the initial value problem (1).

Picard Iteration. Under certain conditions on f (to be discussed below), the solution of (2) is the limit of a Cauchy Sequence of functions:

$$
Y(t)=\lim _{n \rightarrow \infty} Y_{n}(t)
$$

where $Y_{0}(t)=y_{0}$ the constant function and

$$
\begin{equation*}
Y_{n+1}(t)=y_{0}+\int_{t_{0}}^{t} f\left(\tau, Y_{n}(\tau)\right) d \tau \tag{3}
\end{equation*}
$$

Example. Consider the initial value problem $y^{\prime}=y, y(0)=1$, whose solution is $y=e^{t}$ (using techniques we learned last quarter).
Substituting $f(t, y)=y, t_{0}=0$, and $y_{0}=1$ into (3) gives:

$$
\begin{aligned}
& Y_{1}(t)=1+\int_{0}^{t} 1 d \tau=1+t \\
& Y_{2}(t)=1+\int_{0}^{t}(1+\tau) d \tau=1+t+t^{2} / 2 \\
& Y_{3}(t)=1+\int_{0}^{t}\left(1+\tau+\tau^{2} / 2\right) d \tau=1+t+t^{2} / 2+t^{3} / 6 .
\end{aligned}
$$

More generally, using Mathematical Induction, one can show that

$$
Y_{n}(t)=\sum_{k=0}^{n} \frac{t^{k}}{k!} .
$$

Consequently,

$$
\lim _{n \rightarrow \infty} Y_{n}(t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}=e^{t}
$$

Conditions on the function $f(t, y)$. The initial value problem (1) does not always have a unique solution, for consider the initial value problem

$$
\frac{d y}{d t}=f(y), \quad y(0)=0
$$

where $f(y)=\left\{\begin{array}{ll}0 & \text { for } y \leq 0 \\ \sqrt{2 y} & \text { for } y \geq 0 .\end{array}\right.$. Now for any $a>0$, consider the function $\phi_{a}: \mathbb{R} \rightarrow \mathbb{R}$ defined as follows

$$
\phi_{a}(t)= \begin{cases}(t-a)^{2} / 2 & \text { for } t \geq a \\ 0 & \text { for } t \leq a\end{cases}
$$

By construction, ϕ_{a} satisfies the initial condition $\phi_{a}(0)=0$. It also satisfies the differential equation

$$
\phi_{a}^{\prime}(t)=f\left(\phi_{a}(t)\right) \text { for all } t ;
$$

This is clear since

$$
\phi_{a}^{\prime}(t)=0=f(0)=f\left(\phi_{a}(t)\right) \text { for } t \leq a ;
$$

and

$$
\frac{d(t-a)^{2} / 2}{d t}=(t-a)=\sqrt{2(t-a)^{2} / 2}=f\left((t-a)^{2} / 2\right) \text { for } t \geq a
$$

This example shows that we need to impose conditions on f if we want to ensure that (1) has a unique solution. Suppose that f satisfies the following condition:
Let R be the rectangular region

$$
R=\left\{(t, y):\left|t-t_{0}\right| \leq a \text { and }\left|y-y_{0}\right| \leq b\right\}, \text { for } a, b>0 .
$$

Then
(i) The function $f(t, y)$ is continuous as a function of t for all for all $(t, y) \in R$
(ii) There is a constant $K>0$ such that f satisfies the inequality

$$
|f(t, y)-f(t, z)| \leq K|y-z|
$$

for all (t, y) and (t, z) in R.
A function satisfying (ii) is said to be Lipschitz continuous with respect to y on R.
Theorem (Picard-Lindelöf). Suppose f satisfies conditions (i) and (ii) above. Then for some $c>0$, the initial value problem (1) has a unique solution $y=y(t)$ for $\left|t-t_{0}\right|<c$.

We will prove the Picard-Lindelöf Theorem by showing that the sequence $Y_{n}(t)$ defined by Picard iteration is a Cauchy sequence of functions.
Set $M=\operatorname{Max}_{(t, y) \in R}|f(t, y)|$ and set

$$
c=\min \left(a, \frac{b}{M}, \frac{1}{2 K}\right),
$$

and let \mathcal{F} be the collection of all continuous functions $\phi:\left[t_{0}-c, t_{0}+c\right] \rightarrow \mathbb{R}$ defined as follows

$$
\mathcal{F}=\left\{\phi:\left[t_{0}-c, t_{0}+c\right] \rightarrow \mathbb{R}: \phi\left(t_{0}\right)=y_{0} \text { and }\left|\phi(t)-y_{0}\right| \leq b\right\}
$$

Lemma.1. Suppose that $\phi \in \mathcal{F}$. Then the function $\Phi=T[\phi]$ defined by

$$
\Phi(t)=y_{0}+\int_{t_{0}}^{t} f(\tau, \phi(\tau)) d \tau
$$

is also in \mathcal{F}.
Proof. We first have to prove that Φ is well-defined. Set $g(t)=f(t, \phi(t))$. Then

$$
\Phi(t)=y_{0}+\int_{t_{0}}^{t} g(\tau) d \tau
$$

If we can show that g is continuous, than it follows that the integral is well-defined. In fact, by the Fundamental Theorem of Calculus, it follows that Φ is differentiable, and therefore continuous.

Therefore, we have to show that g is continous. To show this, fix t in the interval $I=\left[t_{0}-c, t_{0}+c\right]$, and choose $\epsilon>0$. Since f is continuous as a function of its first variable and ϕ is continuous, there is a $\delta>0$ such that the both of the following conditions are satisfied for $s \in I$:
(i) If $|s-t|<\delta$, then $|f(s, \phi(t))-f(t, \phi(t))|<\epsilon / 2$
(ii) If $|s-t|<\delta$, then $|\phi(s)-\phi(t)|<\epsilon /(2 K)$

Therefore, by the triangle inequality, if $|s-t|<\delta$, then

$$
\begin{aligned}
|g(s)-g(t)| & =\mid f(s, \phi(s))-f(t, \phi(t)|=|f(s, \phi(s))-f(s, \phi(t))+f(s, \phi(t))-f(t, \phi(t))| \\
& \leq|f(s, \phi(s))-f(s, \phi(t))|+|f(s, \phi(t))-f(t, \phi(t))| \\
& \leq K|\phi(s)-\phi(t)|+\epsilon / 2<K \epsilon /(2 K)+\epsilon / 2=\epsilon .
\end{aligned}
$$

To see that Φ is in \mathcal{F}, note that by construction $\Phi\left(t_{0}\right)=y_{0}$. Finally notice that $\left|t-t_{0}\right| \leq c \leq a$ implies $\left|t-t_{0}\right| \leq a$. So

$$
\begin{aligned}
\left|\Phi(t)-y_{0}\right| & \leq\left|\int_{t_{0}}^{t} f(\tau, \phi(\tau)) d \tau\right| \\
& \leq M\left|t-t_{0}\right| \leq M c \leq M(b / M)=b
\end{aligned}
$$

In light of the lemma we just proved, we may view Picard iteration as a map of the form

$$
T: \mathcal{F} \rightarrow \mathcal{F}
$$

Lemma. T satisfies the condition

$$
\|T[\phi]-T[\psi]\| \leq 1 / 2\|\phi-\psi\|,
$$

for all ϕ, ψ in \mathcal{F}, where $\|\beta\|:=\max _{\left|t-t_{0}\right|<c}|\beta(t)|$ for $\beta:\left[t_{0}-c, t_{0}+c \rightarrow \mathbb{R}\right.$ continuous.

Proof. Suppose that ϕ and ψ are functions in \mathcal{F}, and compute as follows:

$$
\begin{aligned}
|T[\phi](t)-T[\psi](t)| & =\left|\int_{t_{0}}^{t} f(\tau, \phi(\tau))-f(\tau, \psi(\tau)) d \tau\right| \\
& \leq K\left|\int_{t_{0}}^{t} \phi(\tau)-\psi(\tau) d \tau\right| \\
& \leq K\|\phi-\psi\| c \\
& \leq K \frac{1}{2 K}\|\phi-\psi\|=1 / 2\|\phi-\psi\|
\end{aligned}
$$

The Picard-Lindelöf Theorem follows from above lemma and Theorem 3 of the handout "Cauchy Sequences of Functions".

