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Analytic Functions

§2. Power Series.

This note is about complex power series. Here is the primary example:

∞
∑

n=0

zn.

This series is important to understand because its behavior is typical of all power series

(defined shortly) and because it is one of the few series we can actually add up explicitly.

The partial sums

Sm =

m
∑

n=0

zn = 1 + z + z2 + . . .+ zm

satisfy

(1− z)Sm = 1− zm+1,

as can be seen by multiplying out the left side and canceling. If z 6= 1 then

Sm =
1− zm+1

1− z
.

Notice that if |z| < 1, then |zm| = |z|m → 0 as m → ∞ and so Sm(z) → 1/(1 − z). If

|z| > 1, then |zm| = |z|m → ∞ and so the sum diverges for these z. If |z| = 1 but z 6= 1

then zn does not tend to 0, so the series diverges. Finally if z = 1 then the partial sums

satisfy Sm = m → ∞, so we conclude that if |z| < 1 then

∞
∑

n=0

zn =
1

1− z
, (2.1)

and if |z| ≥ 1, then the series diverges. It is important to note that the left and right sides

of (2.1) are different objects. They agree in |z| < 1, the right side is defined for all z 6= 1,

but the left side is defined only for |z| < 1.
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2 II. Analytic Functions

The formal power series

f(z) =
∞
∑

n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + . . .

is called a convergent power series centered (or based) at z0 if there is an r > 0 so

that the series converges for all z such that |z − z0| < r. Note: If we plug z = z0 into the

formal power series, then we always get a0 = f(z0) (more formally, the definition of the

summation notation includes the convention that the n = 0 term equals a0, so that we are

not raising 0 to the power 0.) The requirement for a power series to converge is stronger

than convergence at just the one point z0.

A variant of the primary example is:

1

z − a
=

1

z − z0 − (a− z0)
=

1

−(a− z0)(1− ( z−z0
a−z0

))
.

Substituting

w =
z − z0
a− z0

into (2.1) we obtain, when |w| = |(z − z0)/(a− z0)| < 1,

1

z − a
=

∞
∑

n=0

−1

(a− z0)n+1
(z − z0)

n. (2.2)

In other words by (2.1), this series converges if |z− z0| < |a− z0| and diverges if |z− z0| ≥

|a − z0|. The region of convergence is a disk and it is the largest disk centered at z0 and

contained in the domain of definition of 1/(z−a). In particular, this function has a power

series expansion based at every z0 6= a, but different series for different base points z0.

Definition. Suppose {fn} is a sequence of functions defined on a set E. Suppose f is a

function defined on E with the property that for every ε > 0 there exists an N so that

if n ≥ N then |fn(z) − f(z)| < ε for all z ∈ E. In this case we say that fn converges

uniformly to f .

If fn are continuous functions on a set E and if fn converges uniformly to f on E,

then f is continuous on E. Indeed, given ε > 0 choose N as in the definition of uniformly
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continuous. Fix w ∈ E. Because fN is continuous at w, we can choose δ > 0 so that if

|z − w| < δ with z ∈ E then |fN (z)− fN (w)| < ε. Then for |z − w| < δ,

|f(z)− f(w)| ≤ |f(z)− fN (z)|+ |fN (z)− fN (w)|+ |fn(w)− f(w)| < 3ε.

This proves that f is continuous at each w ∈ E.

Theorem 2.1 (Weierstrass M-Test). If |an(z − z0)
n| ≤ Mn for |z − z0| ≤ r and if

∑

Mn < ∞ then
∑

∞

n=0 an(z−z0)
n converges uniformly and absolutely in {z : |z−z0| ≤ r}.

Proof. If M > N then the partial sums Sn(z) satisfy

|SM (z) − SN (z)| =
∣

∣

M
∑

n=N+1

an(z − z0)
n
∣

∣≤

M
∑

n=N+1

Mn.

Since
∑

Mn < ∞, we deduce
∑M

n=N+1 Mn → 0 as N,M → ∞, and so {Sn} is a Cauchy

sequence converging uniformly. The same proof also shows absolute convergence. �

Note that the convergence depends only on the “tail” of the series so that we need

only satisfy the hypotheses in the Weierstrass M-test for n ≥ n0 to obtain the conclusion.

The primary example (2.1) converges on a disk and diverges outside the disk. The

next result says that disks are the only kind of region in which a power series can converge.

Theorem 2.2 (Root Test). Suppose
∑

an(z − z0)
n is a formal power series. Let

R = lim inf
n→∞

|an|
−

1

n =
1

lim sup
n→∞

|an|
1

n

∈ [0,+∞].

Then
∑

∞

n=0 an(z − z0)
n

(a) converges absolutely in {z : |z − z0| < R},

(b) converges uniformly in {z : |z − z0| ≤ r} for all r < R, and

(c) diverges in {z : |z − z0| > R}.



4 II. Analytic Functions

converge

diverge

z0R

Figure II.3 Convergence of a power series.

The number R gives a decay rate for the coefficients, in the sense that if S < R then

|an| ≤ S−n, for large n.

Proof. The idea is to compare the given series with the example (2.1),
∑

zn. If |z− z0| ≤

r < R, then choose r1 with r < r1 < R. Thus r1 < lim inf |an|
−

1

n , and there is an n0 < ∞

so that r1 < |an|
−

1

n for all n ≥ n0. This implies that |an(z − z0)
n| ≤ ( r

r1
)n. But by (2.1),

∞
∑

n=0

(

r

r1

)n

=
1

1− r/r1
< ∞

since r/r1 < 1. Applying Weierstrass’s M-test to the tail of the series (n ≥ n0) proves

(b). This same proof also shows absolute convergence (a) for each z with |z − z0| < R. If

|z − z0| > R, fix z and choose r so that R < r < |z − z0|. Then |an|
−

1

n < r for infinitely

many n and hence

|an(z − z0)
n| >

(

|z − z0|

r

)n

for infinitely many n. Since (|z − z0|/r)
n → ∞ as n → ∞, (c) holds. �

The proof of the Root Test also shows that if the terms an(z−z0)
n of the formal power

series are bounded when z = z1 then the series converges on {z : |z − z0| < |z1 − z0|}.

The Root Test does not give any information about convergence on the circle of radius

R. The series can converge at none, some, or all points of {z : |z−z0| = R}, as the following

examples illustrate.

Examples.

(i)

∞
∑

n=1

zn

n
(ii)

∞
∑

n=1

zn

n2
(iii)

∞
∑

n=1

nzn (iv)

∞
∑

n=1

2n
2

zn (v)

∞
∑

n=1

2−n2

zn
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The reader should verify the following facts about these examples. The radius of

convergence of each of the first three series is R = 1. When z = 1, the first series is the

harmonic series which diverges, and when z = −1 the first series is an alternating series

whose terms decrease in absolute value and hence converges. The second series converges

uniformly and absolutely on {|z| = 1}. The third series diverges at all points of {|z| = 1}.

The fourth series has radius of convergence R = 0 and hence is not a convergent power

series. The fifth example has radius of convergence R = ∞ and hence converges for all

z ∈ C.

What is the radius of convergence of the series
∑

anz
n where

an =

{

3−n if n is even

4n if n is odd?

This is an example where ratios of successive terms in the series does not provide sufficient

information to determine convergence.

§3. Analytic Functions

Definition 3.1. A function f is analytic at z0 if f has a power series expansion valid in

a neighborhood of z0. This means that there is an r > 0 and a power series
∑

an(z− z0)
n

which converges in B = {z : |z − z0| < r} and satisfies

f(z) =
∞
∑

n=0

an(z − z0)
n,

for all z ∈ B. A function f is analytic on a set Ω if f is analytic at each z0 ∈ Ω.

Note that we do not require one series for f to converge in all of Ω. The example

(2.2), (z − a)−1, is analytic on C \ {a} and is not given by one series. Note that if f is

analytic on Ω then f is continuous in Ω. Indeed, continuity is a local property. To check

continuity near z0, use the series based at z0. Since the partial sums are continuous and

converge uniformly on a closed disk centered at z0, the limit function f is continuous on

that disk.
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A natural question at this point is: where is a power series analytic?

Theorem 3.2. If f(z) =
∑

an(z − z0)
n converges on {z : |z − z0| < r} then f is analytic

on {z : |z − z0| < r}.

Proof. Fix z1 with |z1 − z0| < r. We need to prove that f has a power series expansion

based at z1. By the binomial theorem

(z − z0)
n = (z − z1 + z1 − z0)

n =

n
∑

k=0

(

n

k

)

(z1 − z0)
n−k(z − z1)

k.

Hence

f(z) =

∞
∑

n=0

[ n
∑

k=0

an

(

n

k

)

(z1 − z0)
n−k(z − z1)

k

]

. (3.1)

Suppose for the moment, that we can interchange the order of summation, then
∞
∑

k=0

[ ∞
∑

n=k

an

(

n

k

)

(z1 − z0)
n−k

]

(z − z1)
k

should be the power series expansion for f based at z1. To justify this interchange of

summation, it suffices to prove absolute convergence of (3.1). By the root test
∞
∑

n=0

|an||w − z0|
n

converges if |w − z0| < r. Set

w = |z − z1|+ |z1 − z0|+ z0.

Then |w − z0| = |z − z1|+ |z1 − z0| < r provided |z − z1| < r − |z1 − z0|.

z0

z1

w

rr − |z1 − z0|

z

Figure II.4 Proof of Theorem 3.2.
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Thus if |z − z1| < r − |z1 − z0|,

∞ >

∞
∑

n=0

|an||w − z0|
n

=

∞
∑

n=0

|an|
(

|z − z1|+ |z1 − z0|
)n

=
∞
∑

n=0

[ n
∑

k=0

|an|

(

n

k

)

|z1 − z0|
n−k|z − z1|

k

]

as desired. �

Another natural question is: Can an analytic function have more than one power

series expansion based at z0?

Theorem 3.3 (Uniqueness of Series). Suppose

∞
∑

n=0

an(z − z0)
n =

∞
∑

n=0

bn(z − z0)
n,

for all z such that |z − z0| < r where r > 0. Then an = bn for all n.

Proof. Set cn = an − bn. The hypothesis implies that
∑

∞

n=0 cn(z − z0)
n = 0 and we need

to show that cn = 0 for all n. Suppose cm is the first non-zero coefficient. Set

F (z) ≡

∞
∑

n=0

cn+m(z − z0)
n = (z − z0)

−m

∞
∑

n=m

cn(z − z0)
n.

The series for F converges in 0 < |z − z0| < r because we can multiply the terms of the

series on the right side by the non-zero number (z− z0)
−m and not affect convergence. By

the root test, the series for F converges in a disk and hence in {|z − z0| < r}. Since F is

continuous and cm 6= 0, there is a δ > 0 so that if |z − z0| < δ, then

|F (z)− F (z0)| = |F (z)− cm| < |cm|/2.

If F (z) = 0, then we obtain the contradiction | − cm| < |cm|/2. Thus F (z) 6= 0 when

|z − z0| < δ. But (z − z0)
m = 0 only when z = z0, and thus

∞
∑

n=0

cn(z − z0)
n = (z − z0)

mF (z) 6= 0



8 II. Analytic Functions

when 0 < |z − z0| < δ, contradicting our assumption on
∑

cn(z − z0)
n. �

Notice that the proof of Theorem 3.3 shows that if f is analytic at z0 then for some

δ > 0, either f(z) 6= 0 when 0 < |z − z0| < δ or f(z) = 0 for all z such that |z − z0| < δ.

This is because f behaves like the first non-zero term in its power series based at z0, for

|z − z0| sufficiently small. If f(a) = 0, then a is called a zero of f .

There are plenty of continuous functions for which the zeros are not isolated in this

manner. For example x sin(1/x).

§4. Elementary Operations with Analytic Functions

Theorem 4.1. If f and g are analytic at z0 then so are

f + g, f − g, cf (where c is a constant), and fg.

If h is analytic at f(z0) then (h ◦ f)(z) ≡ h(f(z)) is analytic at z0.

Proof. The first three follow from the fact that the partial sums are absolutely convergent

near z0, together with the associative, commutative and distributive laws applied to the

partial sums. Here we have used the fact that absolutely convergent complex series can be

rearranged, which follows from the same statement for real series by considering real and

imaginary parts. To prove that the product of two analytic functions is analytic, multiply

f(z) =
∑

an(z − z0)
n and g =

∑

bn(z − z0)
n as if they were polynomials to obtain:

∞
∑

n=0

an(z − z0)
n

∞
∑

k=0

bk(z − z0)
k =

∞
∑

n=0

(

n
∑

k=0

akbn−k

)

(z − z0)
n, (4.1)

which is called the Cauchy product of the two series. Why is this formal computation

valid? If the series for f and the series for g converge absolutely then because we can

rearrange non-negative convergent series

∞ >
∞
∑

n=0

|an||z − z0|
n

∞
∑

k=0

|bk||z − z0|
k =

∞
∑

n=0

(

n
∑

k=0

|ak||bn−k|

)

|z − z0|
n.
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This says that the series on the right-hand side of (4.1) is absolutely convergent and

therefore can be arranged to give the left-hand side of (4.1). To put it another way, the

doubly indexed sequence anbk(z − z0)
n+k can be added up two ways: If we add along

diagonals: n + k = m, for m = 0, 1, 2, . . ., we obtain the partial sums of the right-hand

side of (4.1). If we add along partial rows and columns n = m, k = 0, . . . , m, and k = m,

n = 0, . . . , m− 1, for m = 1, 2, . . ., we obtain the product of the partial sums for the series

on the left-hand side of (4.1). Since the series is absolutely convergent (as can be seen by

using the latter method of summing the doubly indexed sequence of absolute values), the

limits are the same.

To prove that you can compose analytic functions where it makes sense, suppose

f(z) =
∑

an(z − z0)
n is analytic at z0 and suppose h(z) =

∑

bn(z − a0)
n is analytic at

a0 = f(z0). The sum
∞
∑

m=1

|am||z − z0|
m−1 (4.2)

converges in {z : 0 < |z − z0| < r} for some r > 0 since the series for f is absolutely

convergent, and |z − z0| is non-zero. By the root test (set k = m − 1), this implies that

the series (4.2) converges uniformly in {|z− z0| ≤ r1}, for r1 < r, and hence is bounded in

{|z − z0| ≤ r1}. Thus there is a constant M < ∞ so that

∞
∑

m=1

|am||z − z0|
m ≤ M |z − z0|,

if |z − z0| < r1, and so

∞
∑

m=0

|bm|

( ∞
∑

n=1

|an||z − z0|
n

)m

≤
∞
∑

m=0

|bm|(M |z − z0|)
m < ∞,

for |z − z0| sufficiently small, by the absolute convergence of the series for h. This proves

absolute convergence for the composed series, and thus we can rearrange the doubly-

indexed series for the composition so that it is a (convergent) power series. �

As a consequence, if f is analytic at z0 and f(z0) 6= 0 then composing with the function

1/z which is analytic on C \ {0}, we conclude 1/f is analytic at z0. A rational function
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r is the ratio

r(z) =
p(z)

q(z)

where p and q are polynomials. The rational function r is then analytic on {z : q(z) 6= 0}.

Definition 4.2. If f is defined in a neighborhood of z then

f ′(z) = lim
w→z

f(w)− f(z)

w − z

is called the (complex) derivative of f , provided the limit exists.

The function z does not have a (complex) derivative. If n is a non-negative integer,

(zn)′ = nzn−1.

The next Theorem says that you can differentiate power series term-by-term.

Theorem 4.3. If f(z) =
∑

∞

n=0 an(z− z0)
n converges in B = {z : |z− z0| < r} then f ′(z)

exists for all z ∈ B and

f ′(z) =

∞
∑

n=1

nan(z − z0)
n−1 =

∞
∑

n=0

(n+ 1)an+1(z − z0)
n,

for z ∈ B. Moreover the series for f ′ based at z0 has the same radius of convergence as

the series for f .

Proof. If 0 < |h| < r then

f(z0 + h) − f(z0)

h
− a1 =

∑

∞

n=0 anh
n − a0

h
− a1 =

∞
∑

n=2

anh
n−1 =

∞
∑

n=1

an+1h
n.

By the root test, the region of convergence for the series
∑

an+1h
n is a disk centered at 0

and hence it converges uniformly in {h : |h| ≤ r1}, if r1 < r. In particular,
∑

an+1h
n is

continuous at 0 and hence

lim
h→0

∞
∑

n=1

an+1h
n = 0.
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This proves that f ′(z0) exists and equals a1.

By Theorem 3.2, f has a power series expansion about each z1 with |z1−z0| < r given

by
∞
∑

k=0

[ ∞
∑

n=k

an

(

n

k

)

(z1 − z0)
n−k

]

(z − z1)
k

Therefore f ′(z1) exists and equals the coefficient of z − z1

f ′(z1) =

∞
∑

n=1

an

(

n

1

)

(z1 − z0)
n−1 =

∞
∑

n=1

ann(z1 − z0)
n−1.

By the root test and the fact that n
1

n → 1, the series for f ′ has exactly the same radius of

convergence as the series for f . �

Since the series for f ′ has the same radius of convergence as the series for f , we obtain

the following corollary.

Corollary 4.4. An analytic funtion f has derivatives of all orders. Moreover if f is equal

to a convergent power series on B = {z : |z − z0| < r} then the power series is given by

f(z) =

∞
∑

n=0

f (n)(z0)

n!
(z − z0)

n,

for z ∈ B.

By definition of the symbols, the n = 0 term in the series is f(z0).

Proof. If f(z) =
∑

∞

n=0 an(z − z0)
n, then we proved in Theorem 4.2 that a1 = f ′(z0) and

f ′(z) =
∞
∑

n=1

nan(z − z0)
n−1.

Applying Theorem 4.3 to f ′(z), we obtain 2a2 = (f ′)′(z0) ≡ f ′′(z0) and by induction

n!an = f (n)(z0). �

If f is analytic in a region Ω with f ′(z) = 0 for all z ∈ Ω then by Corollary 4.4, f is

constant. In fact, if f is non-constant then by Theorem 4.3, f ′ is analytic and so the zeros
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of f ′ must be isolated. A useful consequence is that if f and g are analytic with f ′ = g′,

then f − g is constant.

Corollary 4.6. If f(z) =
∑

an(z − z0)
n converges in B = {z : |z − z0| < r} then the

power series

F (z) =
∞
∑

n=0

an
n+ 1

(z − z0)
n+1

converges in B and satisfies

F ′(z) = f(z),

for z ∈ B.

The series for F has the same radius of convergence as the series for f , by Theorem

4.3 or by direct calculation.

§5. Exercises

A

1. Check that examples (i)-(v) in Section 2 are correct.

2. For what values of z is
∞
∑

n=0

(

z

1 + z

)n

convergent? Draw a picture of the region.

3. Prove the sum, product, quotient and chain rules for analytic functions and find the

derivative of (z − a)−n, where n is a positive integer and a ∈ C.

4. (a) Prove that f has a power series expansion about z0 with radius of convergence

r > 0 if and only if g(z) = f(z)−f(z0)
z−z0

has a power series expansion about z0, with the

same radius of convergence. (How must you define g(z0), in terms of the coefficients

of the series for f to make this a true statement?)

(b) It follows from (a) that if f has a power series expansion at z0 with radius of

convergence R and if |z − z0| ≤ r < R then there is a constant C so that
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|f(z)−f(z0)| ≤ C|z−z0|. Use the same idea to show that if f(z) =
∑

an(z−z0)
n

then

|f(z)−

k
∑

n=0

an(z − z0)
n| ≤ Dk|z − z0|

k+1,

where Dk is a constant and |z − z0| ≤ r < R. In other words, the rate of

convergence of the series is given by |z − z0|
k+1

5. Define ez =
∑

∞

n=0
zn

n!
. Show

(a) this series converges for all z ∈ C

(b) ezew = ez+w

(c) Define cos θ = 1
2
(eiθ+e−iθ) and sin θ = 1

2i
(eiθ−e−iθ), so that eiθ = cos θ+ i sin θ.

Using the series for ez show that you obtain the same series expansions as you

learned in calculus for sin and cos. Check by multiplying out the definitions that

cos2 θ + sin2 θ = 1, so that eiθ is a point on the unit circle corresponding to the

cartesian coordinate (cos θ, sin θ).

(d) |ez| = eRez and arg ez = Imz. If z is a non-zero complex number then z = reit,

where r = |z| and t = arg z. Moreover, zn = rneint.

(e) ez = 1 only when z = 2πki for some integer k.

(f) d
dz
ez = ez.

(g)
∫ 2π

0
eintdt = 0, if n is a non-zero integer.

6. Suppose f(z) =
∑

∞

n=1 akz
k converges in |z| < r. Suppose also that |f(1/n)| < e−n

for all n ≥ n0. Prove f(z) = 0 for all |z| < r.


