Theorems of Fubini and Clairaut

In this note we'll prove that, for uniformly continuous functions on a rectangle, the Riemann integral is given by two iterated one variable integrals (Fubini) and as a Corollary, if f has mixed partials of order two which are continuous in a region, then the mixed partials are equal.

First we outline the existence of the Riemann integral with respect to area measure for a uniformly continuous function f. You might find it helpful to review our discussions of Riemann integrals on intervals in \mathbb{R}. Let $R=[a, b] \times[c, d]$ be a (finite) rectangle in \mathbb{R}^{2}. Let $a=x_{0}<x_{1}<\ldots<x_{m}=b$ be a partition of $[a, b]$ and let $c=y_{0}<y_{1}<\ldots<y_{n}=d$ be a partition of $[c, d]$. Let \mathcal{P} be the corresponding partition of R into $m n$ rectangles $R_{i, j}=\left[x_{i}, x_{i-1}\right] \times\left[y_{j}, y_{j-1}\right]$. Set $\Delta x_{i}=x_{i}-x_{i-1}$ and $\Delta y_{j}=y_{j}-y_{j-1}$ and $m_{i, j}=\min _{R_{i, j}} f$ and $M_{i, j}=\max _{R_{i, j}} f$. Note that $\operatorname{Area}\left(R_{i, j}\right)=\Delta x_{i} \Delta y_{j}$. Let $\delta(\mathcal{P}) \equiv \max \operatorname{Area}\left(R_{i, j}\right)$ be the mesh size of the partition \mathcal{P}. Let $L(f, \mathcal{P})=\sum_{i=1}^{m} \sum_{j=1}^{n} m_{i, j} \Delta x_{i} \Delta y_{j}$ and let $U(f, \mathcal{P})=\sum_{i=1}^{m} \sum_{j=1}^{n} M_{i, j} \Delta x_{i} \Delta y_{j}$ be the corresponding lower and upper Riemann sums. As in the one variable case, if \mathcal{P}^{\prime} is a refinement of the partition \mathcal{P} (so each rectangle in \mathcal{P} is a union of finitely many rectangles in the partition \mathcal{P}^{\prime}) then

$$
L(f, \mathcal{P}) \leq L\left(f, \mathcal{P}^{\prime}\right)
$$

because each $m_{i, j}$ is at most the minimum of f on each of the rectangles contained in $R_{i, j}$ in the partition \mathcal{P}^{\prime} and because the sum of the areas of those smaller rectangles equals the area of $R_{i, j}$. Similarly $U\left(f, \mathcal{P}^{\prime}\right) \leq U(f, \mathcal{P})$. So each lower sum is bounded above by $U\left(f, \mathcal{P}_{0}\right)$ where \mathcal{P}_{0} is the trival partition consisting of the single rectangle R. Moreover if \mathcal{P} and \mathcal{Q} are two partitions, there is a common refinement \mathcal{S} with $L(f, \mathcal{P}) \leq L(f, \mathcal{S})$ and $L(f, \mathcal{Q}) \leq L(f, \mathcal{S})$. A similar statement is true for upper Riemann sums.

Note that by the uniform continuity of f, if $\varepsilon>0$ then there is a $\delta_{0}>0$ so that if the mesh size of \mathcal{P} satisfies $\delta(\mathcal{P})<\delta_{0}$ then $M_{i, j}-m_{i, j}<\varepsilon$ for all $i=1, \ldots, m, j=1, \ldots, n$ and hence

$$
U(f, \mathcal{P})-L(f, \mathcal{P}) \leq \sum_{i=1}^{m} \sum_{j=1}^{n}\left(M_{i, j}-m_{i, j}\right) \operatorname{Area}\left(R_{i, j}\right) \leq \varepsilon \operatorname{Area}(R)
$$

Since $\operatorname{Area}(R)$ is finite, there is a unique number I so that the following limits exist and equal I :

$$
\lim _{\delta(\mathcal{P}) \rightarrow 0} L(f, P)=\lim _{\delta(\mathcal{P}) \rightarrow 0} U(f, \mathcal{P})=I
$$

We define

$$
\iint_{R} f(x, y) d A=I
$$

Fubini's theorem allows us to compute this integral using one variable integrals in two different ways.

Theorem (Fubini). If f is uniformly continuous on a rectangle $R=[a, b] \times[c, d]$ then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

The middle quantity in the statement of Fubini's theorem is found by first fixing x and integrating with respect to y. This new function of x is then integrated with respect to x. The third quantity in the statement of Fubini's theorem is similar, with the roles of x and y reversed.

Proof. Because $m_{i, j} \leq f(x, y) \leq M_{i, j}$ for all $(x, y) \in R_{i, j}$ we have that

$$
m_{i, j} \Delta x_{i} \leq \int_{x_{i-1}}^{x_{i}} f(x, y) d x \leq M_{i, j} \Delta x_{i}
$$

provided $y \in\left[y_{j}, y_{j-1}\right]$. Summing over all i we obtain

$$
\sum_{i=1}^{m} m_{i, j} \Delta x_{i} \leq \int_{a}^{b} f(x, y) d x \leq \sum_{i=1}^{m} M_{i, j} \Delta x_{i},
$$

provided $y \in\left[y_{j}, y_{j-1}\right]$. Applying this comparison idea on each interval $\left[y_{j}, y_{j-1}\right]$ we obtain

$$
\left(\sum_{i=1}^{m} m_{i, j} \Delta x_{i}\right) \Delta y_{j} \leq \int_{y_{j-1}}^{y_{j}} \int_{a}^{b} f(x, y) d x d y \leq\left(\sum_{i=1}^{m} M_{i, j} \Delta x_{i}\right) \Delta y_{j} .
$$

Summing over j we obtain

$$
\sum_{j=1}^{n} \sum_{i=1}^{m} m_{i, j} \Delta x_{i} \Delta y_{j} \leq \int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y \leq \sum_{j=1}^{n} \sum_{i=1}^{m} m_{i, j} \Delta x_{i} \Delta y_{j}
$$

We have shown now that for every partition \mathcal{P} of the rectangle R

$$
L(f, \mathcal{P}) \leq \int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y \leq U(f, \mathcal{P}) .
$$

But by our proof of the Riemann integrability of $f, \iint_{R} f(x, y) d A$ is the unique number which satisfies all the inequalities

$$
L(f, \mathcal{P}) \leq \iint_{R} f(x, y) d A \leq U(f, \mathcal{P})
$$

and so

$$
\iint_{R} f(x, y) d A=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

Switching the roles of x and y proves that the area integral is also equal to the iterated integral in the reverse order.

We remark that a continuous function on a closed (finite) rectangle R is uniformly continuous on R. The proof is the same as the proof for closed (finite) intervals.

As a corollary we give a proof of Clairaut's theorem.

Theorem (Clairaut). Suppose f is a differentiable function on an open set U in \mathbb{R}^{2} and suppose that the mixed second partials $f_{x y}$ and $f_{y x}$ exist and are continuous on U. Then

$$
f_{x y}=f_{y x}
$$

Proof. We first note that if $R=[a, b] \times[c, d]$ is a rectangle contained in U then by Fubini's Theorem and the Fundamental Theorem of Calculus

$$
\begin{aligned}
\iint_{R}\left(f_{y}\right)_{x} d A= & \int_{c}^{d}\left(\int_{a}^{b} \frac{\partial\left(f_{y}(x, y)\right)}{\partial x} d x\right) d y=\int_{c}^{d}\left(f_{y}(b, y)-f_{y}(a, y)\right) d y \\
& =f(b, d)-f(b, c)-(f(a, d)-f(a, c))
\end{aligned}
$$

Similarly

$$
\begin{gathered}
\iint_{R}\left(f_{x}\right)_{y} d A=\int_{a}^{b}\left(\int_{c}^{d} \frac{\partial\left(f_{x}(x, y)\right)}{\partial y} d y\right) d x=\int_{a}^{b}\left(f_{x}(x, d)-f_{x}(x, c)\right) d x \\
=f(b, d)-f(a, d)-(f(b, c)-f(a, c))
\end{gathered}
$$

We conclude that

$$
\iint_{R} f_{y x} d A=\iint_{R} f_{x y} d A
$$

We will prove Clairaut's theorem by contradiction. Suppose $f_{x y}-f_{y x}>0$ at some point $\left(x_{0}, y_{0}\right) \in U$. Then because $f_{x y}-f_{y x}$ is continuous, there is a closed rectangle R contained in U so that $f_{x y}-f_{y x}>0$ on all of R. But then $0=\int_{R}\left(f_{x y}-f_{y x}\right) d A>0$. A similar contradiction is obtained if $f_{x y}-f_{y x}<0$ at some point $\left(x_{1}, y_{1}\right) \in U$. We conclude that $f_{x y}=f_{y x}$ at all points of U.

