
Theorems of Fubini and Clairaut

In this note we’ll prove that, for uniformly continuous functions on a rectangle, the Riemann

integral is given by two iterated one variable integrals (Fubini) and as a Corollary, if f has mixed

partials of order two which are continuous in a region, then the mixed partials are equal.

First we outline the existence of the Riemann integral with respect to area measure for a

uniformly continuous function f . You might find it helpful to review our discussions of Rie-

mann integrals on intervals in R. Let R = [a, b] × [c, d] be a (finite) rectangle in R
2. Let

a = x0 < x1 < . . . < xm = b be a partition of [a, b] and let c = y0 < y1 < . . . < yn = d be a partition

of [c, d]. Let P be the corresponding partition of R into mn rectangles Ri,j = [xi, xi−1]× [yj , yj−1].

Set ∆xi = xi − xi−1 and ∆yj = yj − yj−1 and mi,j = minRi,j
f and Mi,j = maxRi,j

f . Note

that Area(Ri,j) = ∆xi∆yj. Let δ(P) ≡ maxArea(Ri,j) be the mesh size of the partition P. Let

L(f,P) =
∑m

i=1

∑n
j=1mi,j∆xi∆yj and let U(f,P) =

∑m
i=1

∑n
j=1Mi,j∆xi∆yj be the correspond-

ing lower and upper Riemann sums. As in the one variable case, if P ′ is a refinement of the partition

P (so each rectangle in P is a union of finitely many rectangles in the partition P ′) then

L(f,P) ≤ L(f,P ′)

because each mi,j is at most the minimum of f on each of the rectangles contained in Ri,j in the

partition P ′ and because the sum of the areas of those smaller rectangles equals the area of Ri,j .

Similarly U(f,P ′) ≤ U(f,P). So each lower sum is bounded above by U(f,P0) where P0 is the

trival partition consisting of the single rectangle R. Moreover if P and Q are two partitions, there

is a common refinement S with L(f,P) ≤ L(f,S) and L(f,Q) ≤ L(f,S). A similar statement is

true for upper Riemann sums.

Note that by the uniform continuity of f , if ε > 0 then there is a δ0 > 0 so that if the mesh

size of P satisfies δ(P) < δ0 then Mi,j −mi,j < ε for all i = 1, . . . ,m, j = 1, . . . , n and hence

U(f,P) − L(f,P) ≤
m
∑

i=1

n
∑

j=1

(Mi,j −mi,j)Area(Ri,j) ≤ εArea(R).

Since Area(R) is finite, there is a unique number I so that the following limits exist and equal I:

lim
δ(P)→0

L(f, P ) = lim
δ(P)→0

U(f,P) = I

We define
∫∫

R

f(x, y)dA = I.

Fubini’s theorem allows us to compute this integral using one variable integrals in two different

ways.
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Theorem (Fubini). If f is uniformly continuous on a rectangle R = [a, b] × [c, d] then

∫∫

R

f(x, y)dA =

∫ b

a

(

∫ d

c

f(x, y)dy

)

dx =

∫ d

c

(

∫ b

a

f(x, y)dx

)

dy.

The middle quantity in the statement of Fubini’s theorem is found by first fixing x and inte-

grating with respect to y. This new function of x is then integrated with respect to x. The third

quantity in the statement of Fubini’s theorem is similar, with the roles of x and y reversed.

Proof. Because mi,j ≤ f(x, y) ≤ Mi,j for all (x, y) ∈ Ri,j we have that

mi,j∆xi ≤

∫ xi

xi−1

f(x, y)dx ≤ Mi,j∆xi

provided y ∈ [yj , yj−1]. Summing over all i we obtain

m
∑

i=1

mi,j∆xi ≤

∫ b

a

f(x, y)dx ≤

m
∑

i=1

Mi,j∆xi,

provided y ∈ [yj , yj−1]. Applying this comparison idea on each interval [yj , yj−1] we obtain
(

m
∑

i=1

mi,j∆xi

)

∆yj ≤

∫ yj

yj−1

∫ b

a

f(x, y)dxdy ≤

(

m
∑

i=1

Mi,j∆xi

)

∆yj .

Summing over j we obtain

n
∑

j=1

m
∑

i=1

mi,j∆xi∆yj ≤

∫ d

c

(

∫ b

a

f(x, y)dx

)

dy ≤

n
∑

j=1

m
∑

i=1

mi,j∆xi∆yj.

We have shown now that for every partition P of the rectangle R

L(f,P) ≤

∫ d

c

(

∫ b

a

f(x, y)dx

)

dy ≤ U(f,P).

But by our proof of the Riemann integrability of f ,
∫∫

R
f(x, y)dA is the unique number which

satisfies all the inequalities

L(f,P) ≤

∫∫

R

f(x, y)dA ≤ U(f,P),

and so
∫∫

R

f(x, y)dA =

∫ d

c

(

∫ b

a

f(x, y)dx

)

dy.

Switching the roles of x and y proves that the area integral is also equal to the iterated integral in

the reverse order. �

We remark that a continuous function on a closed (finite) rectangle R is uniformly continuous

on R. The proof is the same as the proof for closed (finite) intervals.

As a corollary we give a proof of Clairaut’s theorem.
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Theorem (Clairaut). Suppose f is a differentiable function on an open set U in R
2 and suppose

that the mixed second partials fxy and fyx exist and are continuous on U . Then

fxy = fyx.

Proof. We first note that if R = [a, b] × [c, d] is a rectangle contained in U then by Fubini’s

Theorem and the Fundamental Theorem of Calculus

∫∫

R

(fy)xdA =

∫ d

c

(

∫ b

a

∂(fy(x, y))

∂x
dx

)

dy =

∫ d

c

(fy(b, y)− fy(a, y))dy

= f(b, d)− f(b, c)− (f(a, d)− f(a, c)).

Similarly
∫∫

R

(fx)ydA =

∫ b

a

(

∫ d

c

∂(fx(x, y))

∂y
dy

)

dx =

∫ b

a

(fx(x, d) − fx(x, c))dx

= f(b, d)− f(a, d)− (f(b, c)− f(a, c)).

We conclude that
∫∫

R

fyxdA =

∫∫

R

fxydA.

We will prove Clairaut’s theorem by contradiction. Suppose fxy − fyx > 0 at some point

(x0, y0) ∈ U . Then because fxy − fyx is continuous, there is a closed rectangle R contained in U

so that fxy − fyx > 0 on all of R. But then 0 =
∫

R
(fxy − fyx)dA > 0. A similar contradiction is

obtained if fxy − fyx < 0 at some point (x1, y1) ∈ U . We conclude that fxy = fyx at all points of

U . �
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