1. Find the Schmidt decomposition and the singular value decomposition of the matrix $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$.

NEXT TIME GET A BETTER MATRIX (easier singular values)
2. Solve the initial value problem

$$
\begin{array}{ll}
\frac{d x_{1}}{d t}+2 x_{1}-x_{2}=0 & x_{1}(0)=6 \\
\frac{d x_{2}}{d t}-x_{1}+2 x_{2}=0 & x_{2}(0)=7
\end{array}
$$

as follows:
(i) Write the problem in vector form:

$$
\frac{d}{d t} X+A \cdot X=O \quad X(0)=\binom{6}{7}
$$

(ii) Find an orthonormal basis of eigenvectors of the matrix A.
(iii) Find two independent solutions $X=X_{1}(t)$ and $X=X_{2}(t)$ of $d X / d t+A \cdot X=O$ with

$$
X_{1}(t)=f_{1}(t) B_{1} \text { and } X_{2}(t)=f_{2}(t) B_{2}
$$

where $\left\{B_{1}, B_{2}\right\}$ is an orthonormal basis of \mathbb{R}^{2}, and f_{1} and f_{2} are real valued functions.
(iv) Using (ii), write the general solution in the form

$$
X(t)=B \cdot\left(\begin{array}{cc}
e^{-\lambda_{1} t} & 0 \\
0 & e^{-\lambda_{2} t}
\end{array}\right) \cdot\binom{c_{1}}{c_{2}}
$$

where the columns of B are B_{1} and B_{2}.
(v) Show that $\binom{c_{1}}{c_{2}}=B^{t} \cdot\binom{6}{7}$.
(vi) Put this all together to write the solution in the form

$$
X(t)=B \cdot\left(\begin{array}{cc}
e^{-\lambda_{1} t} & 0 \\
0 & e^{-\lambda_{2} t}
\end{array}\right) \cdot B^{t} \cdot X_{0}
$$

3. Solve the initial value problem

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{2}+x_{3}, & x_{1}(0)=3 \\
x_{2}^{\prime}=x_{1}+x_{3}, & x_{2}(0)=0 \\
x_{3}^{\prime}=x_{1}+x_{2}, & x_{3}(0)=0
\end{array}
$$

by finding an orthonormal basis of eigenvectors of the appropriate matrix.
Hint: $t^{3}-3 t-2=(t-2)(t+1)^{2}$
4. Let $A=\left(\begin{array}{ccc}0 & -c & b \\ c & 0 & -a \\ -b & a & 0\end{array}\right)$ be a non-zero 3×3 skew symmetric matrix.
(i) Show that the characteristic polynomial of A is of the form

$$
p_{A}(t)=t^{3}+\left(a^{2}+b^{2}+c^{2}\right) t=t\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right)=t\left(t^{2}-\left(\lambda_{1}+\lambda_{2}\right) t+\lambda_{1} \lambda_{2}\right)
$$

and from this conclude that the spectrum of A is of the form $\left\{0, \lambda_{1}, \lambda_{2}\right\}$, with

$$
\lambda_{1}+\lambda_{2}=0 \text { and } \lambda_{1} \lambda_{2}=a^{2}+b^{2}+c^{2}
$$

Conclude that $\lambda_{1}=i \omega$ and $\lambda_{2}=-i \omega$, with $\omega=\sqrt{a^{2}+b^{2}+c^{2}}$
(ii) Let $B_{1}=\frac{1}{\omega}\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$. Show that $A \cdot B_{1}=O$.
(iii) Let $B_{2}+i B_{3}$ satisfy

$$
A \cdot\left(B_{2}+i B_{3}\right)=i \omega\left(B_{2}+i B_{3}\right) \Longrightarrow A \cdot B_{2}=-\omega B_{3} \text { and } A \cdot B_{3}=\omega B_{2}
$$

Prove that $\left\|B_{2}\right\|=\left\|B_{3}\right\|$ and $\left\langle B_{1}, B_{2}\right\rangle=\left\langle B_{1}, B_{3}\right\rangle=\left\langle B_{3}, B_{3}\right\rangle=0$. Hence, (after rescaling B_{2} and B_{3} if necessary) $\left\{B_{1}, B_{2}, B_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3} with respect to the standard scalar product.
Hint: Show that $X^{t} \cdot A \cdot X=0$ for any vector; then show that for $i \neq j$, the scalar product $\left\langle B_{i}, B_{j}\right\rangle$ can be expressed as a multiple of $X^{t} A X$ for $X=B_{i}$ or $X=B_{j}$.
(iv) Use these facts to prove that

$$
R_{t}=\exp (t A)=B \cdot \exp \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \omega t \\
0 & -\omega t & 0
\end{array}\right) \cdot B^{t}=B \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\omega t) & \sin (\omega t) \\
0 & -\sin (\omega t) & \cos (\omega t)
\end{array}\right) \cdot B^{t}
$$

In particular, R_{t} is a clockwise rotation by ωt radians about the vector B_{1} :

$$
R_{t} \cdot B_{1}=B_{1}, \quad R_{t}\left(B_{2}\right)=\cos (\omega t) B_{2}-\sin (\omega t) B_{3} R_{t}\left(B_{3}\right)=\sin (\omega t) B_{2}+\cos (\omega t) B_{3}
$$

5. Which of the matrices below are diagonalizable? In each case, give a one or two sentence explanation for your answer.

$$
\text { (a) }\left(\begin{array}{llll}
3 & 1 & 4 & 5 \\
0 & 2 & 4 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 7
\end{array}\right) \quad(b)\left(\begin{array}{cccc}
3 & 1 & 1 & 1 \\
1 & 4 & 2 & 1 \\
1 & 2 & 4 & 5 \\
1 & 1 & 5 & 7
\end{array}\right) \quad(c)\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

6. What is the shape of the set of all solutions to the equation

$$
4 x^{2}-2 x y+4 y^{2}=1 ?
$$

7. Find the Cholesky decomposition of the following matrix.

$$
A=\left(\begin{array}{cccc}
4 & 2 & -2 & 2 \\
2 & 26 & 13 & 1 \\
-2 & 13 & 14 & -1 \\
2 & 1 & -1 & 10
\end{array}\right)
$$

8. Use your answer to the previous problem to solve $A x=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)^{T}$
