Chapter 4:

(1) Problem 1.6
(2) Problem 1.7
(3) Problem 2.12
(4) Problem 2.13
(5) Consider the linear map $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by muliplication by the real $n \times n$ matrix A.

Suppose that $\lambda=\alpha+i \beta \in \mathbb{C}, \beta \neq 0$, is a complex eigenvalue of L_{A}, with complex eigenvector $Z=X_{1}+i X_{2}$, where X_{1} and X_{2} are column vectors in \mathbb{R}^{n} (not both zero). Thus,

$$
A \cdot Z=\left(A \cdot X_{1}\right)+i\left(A \cdot X_{2}\right)=\left(\alpha X_{1}-\beta X_{2}\right)+i\left(\alpha X_{2}+\beta X_{1}\right)
$$

(a) Prove that the vectors X_{1} and X_{2} are linearly independent and, therefore, span the 2-dimensional subspace $W=\operatorname{span}\left(X_{1}, X_{2}\right) \subset \mathbb{R}^{n}$.
(b) Show that L_{A} restricts to define a linear map $L_{W}: W \rightarrow W$ and that the matrix of L_{W} with respect to the basis $\left\{X_{1}, X_{2}\right\}$ of W is

$$
|\lambda|\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

where $\lambda=|\lambda| e^{i \theta}$ (the polar form of λ).
(c) What is the geometrical interpretation of the result of part (b)?

