(1) Let $U \subset \mathbb{R}^{4}$ be the subspace spanned by the two column vectors

$$
A_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \text { and } A_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)
$$

Let $P: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ denote the linear map given by orthogonal projection onto $U$. Find the matrix of $P$ with respect to the standard basis for $\mathbb{R}^{4}$.
(2) Let $\langle$,$\rangle be a positive definite inner product on the vector space V$. Let $L: V \rightarrow V$ be a linear operator that satisfies the condition

$$
\langle u, L(v)\rangle=\langle L(u), v\rangle \text { for all } u, v, \in V .
$$

(Such an operator is said to be self-adjoint.)
Let $v_{\lambda}$ and $v_{\mu}$ be eigenvectors associated to the eigenvalues $\lambda$ and $\mu$ of $L$, with $\lambda \neq \mu$. Show that $v_{\lambda} \perp v_{\mu}$.
(3) Let $V$ be the vector space of continuous functions on the interval $[0, \pi]$, that vanish at 0 and $\pi$; and let $\langle$,$\rangle be the scalar product defined by$

$$
\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) d x
$$

Let $g_{k}(x)=\sin (k x)$, for $k=1,2,3, \ldots$, and let $W_{n} \subset V$ be the subspace generated by the set $\left\{g_{k}: k=1,2, \ldots, n\right\}$.
(a) Show that $\left\{g_{k}: k=1,2, \ldots\right\}$ is an orthogonal set.
(b) Let $f(x)=x(\pi-x)$. Let $f_{n}$ denote the orthogonal projection of $f$ onto $W_{n}$. Show that

$$
f_{2 n+1}(x)=\frac{8}{\pi} \sum_{k=0}^{n} \frac{\sin ((2 k+1) x)}{(2 k+1)^{3}}
$$

(4) Let $V$ be the vector space of continuous functions on the closed interval $[-1,1]$, with scalar product defined by

$$
\langle f, g\rangle=\int_{-1}^{+1} f(x) g(x) d x
$$

(a) Apply the Gram-Schmidt orthogonalization process to the set $\left\{1, x, x^{2}, x^{3}\right\}$ to obtain an orthogonal set of four polynomials, $\left\{p_{0}(x), p_{1}(x), p_{2}(x), p_{3}(x)\right\}$.
(b) Verify that $p_{k}$ is a solution of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \text { with } \lambda=k(k+1) .
$$

Remark: After multiplication by constants the functions $p_{k}(x)$ are called Legendre polynomials and the differential equation is called Legendre's equation.

