(1) Let $U \subset \mathbb{R}^4$ be the subspace spanned by the two column vectors

$$A_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $A_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$.

Let $P: \mathbb{R}^4 \to \mathbb{R}^4$ denote the linear map given by orthogonal projection onto U. Find the matrix of P with respect to the standard basis for \mathbb{R}^4 .

(2) Let \langle , \rangle be a positive definite inner product on the vector space V. Let $L: V \to V$ be a linear operator that satisfies the condition

$$\langle u, L(v) \rangle = \langle L(u), v \rangle$$
 for all $u, v \in V$.

(Such an operator is said to be self-adjoint.)

Let v_{λ} and v_{μ} be eigenvectors associated to the eigenvalues λ and μ of L, with $\lambda \neq \mu$. Show that $v_{\lambda} \perp v_{\mu}$.

(3) Let V be the vector space of continuous functions on the interval $[0, \pi]$, that vanish at 0 and π ; and let \langle , \rangle be the scalar product defined by

$$\langle f, g \rangle = \int_0^{\pi} f(x)g(x) dx.$$

Let $g_k(x) = \sin(kx)$, for k = 1, 2, 3, ..., and let $W_n \subset V$ be the subspace generated by the set $\{g_k : k = 1, 2, ..., n\}$.

- (a) Show that $\{g_k : k = 1, 2, ...\}$ is an orthogonal set.
- (b) Let $f(x) = x(\pi x)$. Let f_n denote the orthogonal projection of f onto W_n . Show that

$$f_{2n+1}(x) = \frac{8}{\pi} \sum_{k=0}^{n} \frac{\sin((2k+1)x)}{(2k+1)^3}.$$

(4) Let V be the vector space of continuous functions on the closed interval [-1, 1], with scalar product defined by

$$\langle f, g \rangle = \int_{-1}^{+1} f(x)g(x) dx$$
.

- (a) Apply the Gram-Schmidt orthogonalization process to the set $\{1, x, x^2, x^3\}$ to obtain an orthogonal set of four polynomials, $\{p_0(x), p_1(x), p_2(x), p_3(x)\}$.
- (b) Verify that p_k is a solution of the differential equation

$$(1-x^2)y'' - 2xy' + \lambda y = 0$$
, with $\lambda = k(k+1)$.

Remark: After multiplication by constants the functions $p_k(x)$ are called *Legendre* polynomials and the differential equation is called *Legendre's equation*.