Midterm 1 Math 136 Spring 2016

Name:
3. Let $L_{A}: \mathbb{R}^{6} \rightarrow R^{4}$ be given by

$$
L_{a}(\mathbf{x})=A \mathbf{x}
$$

for $\mathbf{x} \in \mathbb{R}^{6}$, where A is the matrix

$$
A=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 2 & 0 \\
3 & 4 & 3 & 1 & 2 & 0 \\
3 & 3 & 3 & 1 & 2 & 1
\end{array}\right)
$$

(a) Find the row reduced echelon form of A.
(b) What is the dimension of $\operatorname{ranL}_{\mathrm{A}}$ (the image or range of L_{A})?
(c) What is the dimension of $\operatorname{kerL}_{\mathrm{A}}$ (the kernel of L_{A})?
(d) Find a basis for $\operatorname{kerL}_{\mathrm{A}}$.
(e) Find a basis for $\operatorname{ranL}_{\mathrm{A}}$.
2. Show that the equation of the plane $A x+B y+C z+D=0$ passing through the three points $(1,1,1),(3,2,1)$, and $(1,2,3)$ can be written in the form

$$
\left|\begin{array}{llll}
x & y & z & 1 \\
1 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 \\
1 & 2 & 3 & 1
\end{array}\right|=0
$$

You do not have to explicitly compute the values of A, B, C, D but rather just describe how to find values, not all of which are zero, and give reasons why your process works.
3. Let V be a vector space of dimension n and let $P: V \rightarrow V$ be a linear map satisfying the identity

$$
P \circ P=P,
$$

(i.e. $P(P(\vec{v}))=P(\vec{v})$ for all $\vec{v} \in V)$. Suppose that $\left\{\vec{b}_{1}, \ldots, \vec{b}_{r}\right\}$ is a basis for the range of P and $\left\{\vec{b}_{r+1}, \ldots, \vec{b}_{n}\right\}$ is a basis for the kernel of P.
(a) Show that $\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ is a basis for V.
(b) Suppose $r=3$ and $n=5$, find the matrix of P with respect to the basis $\left\{\vec{b}_{1}, \ldots, \vec{b}_{5}\right\}$.
4. Suppose that A is an $n \times n$ matrix with only one eigenvalue λ and suppose that the geometric and analytic multiplicity of this eigenvalue agree. What is A ? (prove your answer is correct).

