MATH CIRCLE HOMEWORK 6

A warm-up and a review:

1. Three friends - sculptor White, violinist Black, and artist Redhead - are in a cafeteria. "It is remarkable that one of us has white hair, another has black hair, and the third red hair, though no one's name gives the color of their hair," said the black-haired person. "You are right," answered White. What color is the artist's hair?
2. A box contains 300 matches. Players take turns removing no more than half the matches in the box. The player who cannot move loses. Who has the winning strategy?

Modular stuff:
3. Show that if $2^{n}+1$ is prime then n must be a power of 2 . Must $2^{2^{m}}+1$ be prime for every nonnegative integer m ?
4. In this problem we will show that if p is prime and p does not divide a, then $a^{p-1} \equiv 1(\bmod p)$.
(1) Let p be a prime and a a number not divisible by p. Show that none of the numbers $a, 2 a, 3 a, \ldots,(p-1) a$ are divisible by p.
(2) Let p and a be the same as above. Show that, in lowest form modulo p, the set of numbers

$$
a, 2 a, 3 a, \ldots,(p-1) a \quad(\bmod p)
$$

is just a rearrangement of the numbers

$$
1,2,3, \ldots, p-1
$$

(3) Show that $a^{p-1}(p-1)!\equiv(p-1)!(\bmod p)$. Conclude that $a^{p-1} \equiv 1(\bmod$ p).
5. Use the previous problem to show that every number $1,2,3, \ldots, p-1$ has a multiplicative inverse, modulo p, when p is prime. That is, show that for every $x=1,2,3, \ldots, p-1$, there exists an integer y so that $x y \equiv 1(\bmod p)$.

