Math Circle - Homework 4

1. ($\mathbf{1 0}$ points) For any positive integer $n>5$, show how to decompose a square into n sub-squares (possibly of different sizes).
2. (10 points) Andrey and Bethany are gambling on a few games of chance in the Inductive Casino. They take turns playing a single game each. In the first game, Andrey wins $\$ 1$! But in the second game, Bethany loses $\$ 2$. In the third game, Andrey is back to winning - this time $\$ 3$. However in the fourth game Bethany loses $\$ 4$. They keep on this same track all night, where in any oddnumbered game number $2 n-1$, Andrey wins $2 n-1$ dollars. But directly after that, Bethany loses $2 n$ dollars in the next gamble.

After the first game, their winnings are $\$ 1$. After the second, they have a net (total) loss of $\$ 1$. After the third game, Andrey's win brings up their net (total) winnings to $\$ 2=1-2+3$. However Bethany's loss of $\$ 4$ in the fourth game gives them now a net loss of $\$ 2$.

After every odd-numbered game $2 n-1$, Andrey and Bethany have a net winning. And after every even-numbered game $2 n$, they have a net loss. What are these total winning and loss values (in terms of n)? Prove that both your winning and loss values are correct.

3. (10 points) Prove using mathematical induction that there are $\frac{n(n-1)}{2}$ ways of choosing two different socks from a drawer full of n socks.
4. ($\mathbf{1 0}$ points) Is the value of $n^{2}+n+41$ prime for all nonnegative integers $n=0,1,2,3, \ldots$? If so, prove it. If not, why not?

