Math Circle - Homework 5

1. (10 points each) Finish the problems from the group worksheet on induction.
2. Just like in finding that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$, induction can also be useful in proving algebraic identiies with sums.
(a) (10 points) Evaluate

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(n-1) n} .
$$

Can you also find a clever way to do it without induction? (Hint: Try to see what this is for small numbers n, then make a guess about what it is in the general case.)
(b) (10 points) Show that

$$
1+8+27+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}
$$

(Hint: Do we already have a formula for the right side?)
(c) (10 points) Challenge: Show (by induction, of course) that

$$
1+4+9+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. (10 points) Suppose we have a very large chessboard, size $2^{n} \times 2^{n}$, with the top left corner removed. Is it possible to tile this board with "L" shapes, as shown below?

