Math Circle - Spring 2012 - Homework 1

1. (10 points) Either prove the following statement or give a counterexample relation on the integers. A relation which is both *symmetric* and *transitive* is also necessarily *reflexive*.

2. (10 points) Let S be the set $S = \{1, 2, 3, 4, 5\}$. How many different equivalence relations \sim can you define on S which have exactly two equivalence classes?

3. (10 points) Prove that the following is an equivalence relation on the real numbers \mathbb{R} (in other words, show it is symmetric, transitive, and reflexive):

 $x \sim y$: x - y is a rational number.

Note. As an example of this relation, $\pi \sim (\pi + 2/5)$ [because $\pi - (\pi + 2/5) = -2/5$ is rational], but π is not related to $\sqrt{2}$ [because $\pi - \sqrt{2}$ is not rational].

4. (10 points) Recall that the *power set* of $S = \{1, 2, 3\}$ is the collection $\mathscr{P}(S)$ of all subsets of S. In particular, $\mathscr{P}(S)$ has 8 elements in it:

 $\emptyset \quad \{1\} \quad \{2\} \quad \{3\} \quad \{1,2\} \quad \{1,3\} \quad \{2,3\} \quad \{1,2,3\}.$

There is a natural relation $\propto = \subseteq$ on these 8 subsets.

(a) Which of the five types of relations (symmetric, transitive, reflexive, antisymmetric, total) does the relation \subseteq satisfy?

(b) Come up with a picture which depicts this relation \subseteq .