Math Circle - Spring 2012 - Homework 1

1. (10 points) Either prove the following statement or give a counterexample relation on the integers. A relation which is both symmetric and transitive is also necessarily reflexive.

2. (10 points) Let S be the set $S=\{1,2,3,4,5\}$. How many different equivalence relations \sim can you define on S which have exactly two equivalence classes?
3. ($\mathbf{1 0}$ points) Prove that the following is an equivalence relation on the real numbers \mathbb{R} (in other words, show it is symmetric, transitive, and reflexive):

$$
x \sim y \quad: \quad x-y \text { is a rational number. }
$$

Note. As an example of this relation, $\pi \sim(\pi+2 / 5)$ [because $\pi-(\pi+2 / 5)=-2 / 5$ is rational], but π is not related to $\sqrt{2}$ [because $\pi-\sqrt{2}$ is not rational].
4. (10 points) Recall that the power set of $S=\{1,2,3\}$ is the collection $\mathscr{P}(S)$ of all subsets of S. In particular, $\mathscr{P}(S)$ has 8 elements in it:
$\emptyset \quad\{1\} \quad\{2\} \quad\{3\} \quad\{1,2\} \quad\{1,3\} \quad\{2,3\} \quad\{1,2,3\}$.

There is a natural relation $\propto=\subseteq$ on these 8 subsets.
(a) Which of the five types of relations (symmetric, transitive, reflexive, antisymmetric, total) does the relation \subseteq satisfy?
(b) Come up with a picture which depicts this relation \subseteq.

