Math Circle - Spring 2012 - Homework 2

1. (10 points) Let S be the set $S=\{1,2,3,4,5\}$. How many different equivalence relations \sim can you define on S which have exactly two equivalence classes?
2. ($\mathbf{1 0}$ points) Recall the partial order \propto on the positive integers by divisibility. That is, $n \propto k$ if n divides k. For example, $4 \propto 20$ and $5 \propto 20$, but $3 \not \propto 17$.

Suppose that p, q, and r are distinct prime numbers. Draw the divisibility partial order for (i) $p q r$ and (ii) $p q^{2}$.

3. ($\mathbf{1 0}$ points) Let S be the collection of all 2-dimensional polygons. Define a relation \sim on S by saying that for two shapes X and Y, we have $X \sim Y$ if $\operatorname{area}(X)=\operatorname{area}(Y)$, where area (X) denotes the total area of the figure X.
(a) Prove that \sim is an equivalence relation.
(b) Come up with a way of nicely representing (drawing) the quotient set S / \sim.

4. (15 points) Let $S=\{(x, y): x$ and y are integers, and $y \neq 0\}$. Define a relation \sim on S by

$$
(x, y) \sim(a, b) \quad \Longleftrightarrow \quad x b=y a .
$$

(a) (5 points) Prove that \sim is an equivalence relation.
(b) (10 points) Describe S / \sim by recognizing it as another mathematical structure that we are much more used to dealing with.

