Math Circle - Winter 2012 - Homework 3

In each problem, make sure you verify the claim to yourself for small n and k.

1. (15 points) Let $n \geq 0$ and $k>0$ be integers. You are the Dean of Clown College! As the Dean, it is your job to create balloon boxes for each of your clowns. Balloons come in $n+1$ different colors, and each balloon box contains k balloons. The k balloons in a balloon box can be any combination of the $n+1$ colors (even all the same color if you want!).

Show that you can make a total of $\binom{n+k}{k}$ different ballon boxes. Hint. You can do this with a bijective proof. Recall that $\binom{n+k}{n}$ is the number of ways of choosing n balls from $n+k$ total distinguishable balls. Show that this process is somehow the same as picking different balloon boxes.

2. (10 points) Give a bijective proof (i.e. not algebraic manipulation) for:

$$
\binom{n}{1}+2\binom{n}{2}=n^{2}
$$

Hint. Recall the worksheet from class.

3 (15 points) Prove that the following formula is valid:

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

Hint. Use a bijective proof - what does the expression on the right count? Also, do not forget that $\binom{n}{k}=\binom{n}{n-k}$.

