MATH CIRCLE - INTUITION WITH SETS

In this worksheet, A, B, and C all denote sets.

- (1) For each of the following, either give an example or explain why such an example is impossible.
 - (a) Two finite sets A and B such that $A \cup B$ is infinite.
 - (b) Two infinite sets A and B such that $A \cap B$ is finite.
 - (c) An infinite set A and an infinite subset $B \subseteq A$ such that the set difference A B is finite.
 - (d) An infinite set A and an infinite subset $B \subseteq A$ such that the set difference A B is infinite.
 - (e) An infinite set A and a finite subset $B \subseteq A$ such that the set difference A B is also finite.
 - (f) Two different sets $A \neq B$ such that $A B = \emptyset$.

- (g) A finite set A such that the power set P(A) has exactly 5 elements.
- (h) An infinite set A and two infinite subsets $B, C \subseteq A$ such that both $B \cap C = \emptyset$ and $B \cup C = A$.
- (2) What can you say about the following sets? (a) $A \cup A$

(b) $B \cap B$

(c) $(A \cap B) \cap C$

(d) $(A \cup B) \cap A$

(e) $(A \cup B) \cap C$

(f) $(A \cap B) \cup C$

(3) If |A| = n, what is the size of its power set P(A)?

(4) Write a formula for $|A \cup B|$ in terms of |A|, |B|, and $|A \cap B|$.