MATH CIRCLE - INTUITION WITH SETS

In this worksheet, A, B, and C all denote sets.
(1) For each of the following, either give an example or explain why such an example is impossible.
(a) Two finite sets A and B such that $A \cup B$ is infinite.
(b) Two infinite sets A and B such that $A \cap B$ is finite.
(c) An infinite set A and an infinite subset $B \subseteq A$ such that the set difference $A-B$ is finite.
(d) An infinite set A and an infinite subset $B \subseteq A$ such that the set difference $A-B$ is infinite.
(e) An infinite set A and a finite subset $B \subseteq A$ such that the set difference $A-B$ is also finite.
(f) Two different sets $A \neq B$ such that $A-B=\emptyset$.
(g) A finite set A such that the power set $P(A)$ has exactly 5 elements.
(h) An infinite set A and two infinite subsets $B, C \subseteq A$ such that both $B \cap C=\emptyset$ and $B \cup C=A$.
(2) What can you say about the following sets?
(a) $A \cup A$
(b) $B \cap B$
(c) $(A \cap B) \cap C$
(d) $(A \cup B) \cap A$
(e) $(A \cup B) \cap C$
(f) $(A \cap B) \cup C$
(3) If $|A|=n$, what is the size of its power set $P(A)$?
(4) Write a formula for $|A \cup B|$ in terms of $|A|,|B|$, and $|A \cap B|$.

