Math Circle - Geometry of Equivalence Relations

Recall that a relation on a set S which is symmetric, transitive, and reflexive is called an **equivalence relation**. For equivalence relations, we'll use \sim instead of \propto .

Definition. Let $a \in S$. Then the **equivalence class** of a is the subset [a] of S $[a] = \{s \in S : a \sim s\}.$

Theorem. Let $a, b \in S$. Then [a] = [b] if and only if $a \sim b$.

A consequence of the previous theorem is that an equivalence relation allows you to break up the set S into disjoint groups, where each group corresponds to an *equivalence class*. This is called a **partition** of S.

For each of the following problems, let $S = \mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$. Verify that the given \sim is indeed an equivalence relation (symmetric, transitive, reflexive). Then draw what the equivalence classes look like.

- 1. $(x, y) \sim (a, b) : y = b$.
- 2. $(x, y) \sim (a, b) : y b$ is an integer.
- 3. $(x,y) \sim (a,b) : x^2 + y^2 = a^2 + b^2$.
- 4. $(x, y) \sim (a, b) : x y = a b$.
- 5. $(x, y) \sim (a, b)$: There exists $\lambda \neq 0$ such that $\lambda(x, y) = (a, b)$.

Definition. The **quotient set** of S with respect to the equivalence relation \sim is the collection of all equivalence classes:

$$S/\!\!\sim = \{[a] : a \in S\}.$$

This S/\sim is just the formal way of grouping everything in S into their respective equivalence classes. If $a \sim b$, then [a] and [b] are the exact same element in S/\sim . We read this as "S mod \sim ".

For each of the relations on $S = \mathbb{R}^2$ above, try to give a drawing for S/\sim

Important: each equivalence class you drew originally should somehow correspond to a single point in the S/\sim picture.