## Math Circle - Chooses

Given nonnegative integers $n \geq k \geq 0$, recall that $n$ factorial is defined as

$$
n!=n(n-1)(n-2) \cdots(2)(1)
$$

For convenience we define $0!=1$. The following theorem is almost a definition.

$$
\text { Theorem A. For a positive integer } n \text {, we have } n!=n \cdot(n-1) \text { ! }
$$

We find it convenient to define another notation, called chooses. Define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

You may have seen the notation ${ }_{n} C_{k}$ before. We pronounce this as $n$ choose $k$, because of the following theorem.

Question 1. Verify using this definition that $\binom{n}{k}=\binom{n}{n-k}$.
Theorem B. $\binom{n}{k}$ is the number of ways of choosing $k$ things from a set of $n$ things if order does not matter.

Question 2. Verify this interpretation of $\binom{n}{k}$ for $k=0,1$, and $n$ ?
Question 3. Verify (again!) that $\binom{n}{k}=\binom{n}{n-k}$. This time use Theorem B.
Question 4. Is Theorem B obvious? Is it even clear that $\binom{n}{k}$ is an integer?

## Pascal's Triangle

(a) Verify the following equality:

$$
\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}
$$

(b) For a fixed nonnegative integer $n$, we can write down all of $\binom{n}{k}$ in a row, left-to-right, for $k=0,1,2, \ldots, n-1, n$. Then using part (a), we can immediately write down the row for $n+1$ right underneath it!

Try this for $n=4$ :

(c) Start from $n=0$ and go to $n=7$ forming the rows described in part (b), one on top of the other. This forms a triangle, which continuing forever is called Pascal's triangle.

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& \begin{array}{llll}
1 & 3 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

Question 5. How does Pascal's triangle prove that $\binom{n}{k}$ is always an integer?
Question 6. How can we use part (a) to prove Theorem B?

