Math Circle - Chooses

Given nonnegative integers $n \ge k \ge 0$, recall that *n* factorial is defined as

$$n! = n(n-1)(n-2)\cdots(2)(1).$$

For convenience we define 0! = 1. The following theorem is almost a definition.

Theorem A. For a positive integer n, we have $n! = n \cdot (n-1)!$

We find it convenient to define another notation, called **chooses**. Define

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

You may have seen the notation ${}_{n}C_{k}$ before. We pronounce this as n choose k, because of the following theorem.

Question 1. Verify using this definition that $\binom{n}{k} = \binom{n}{n-k}$.

Theorem B. $\binom{n}{k}$ is the number of ways of choosing k things from a set of n things if order does not matter.

Question 2. Verify this interpretation of $\binom{n}{k}$ for k = 0, 1, and n?

Question 3. Verify (again!) that $\binom{n}{k} = \binom{n}{n-k}$. This time use Theorem B.

Question 4. Is Theorem B obvious? Is it even clear that $\binom{n}{k}$ is an integer?

Pascal's Triangle

(a) Verify the following equality:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

(b) For a fixed nonnegative integer n, we can write down all of $\binom{n}{k}$ in a row, left-to-right, for k = 0, 1, 2, ..., n - 1, n. Then using part (a), we can immediately write down the row for n + 1 right underneath it!

Try this for n = 4:

	$\binom{4}{0}$	$\binom{4}{1}$	$\binom{4}{2}$	$\binom{4}{3}$	$\binom{4}{4}$)
					II	
	1	4	6	4	1	-
	\setminus	/		$\backslash/$		
1	5	j]	10	10	5	1
$\binom{5}{0}$	$\binom{5}{1}$) ($\binom{5}{2}$	$\binom{5}{3}$	$\binom{5}{4}$	$\binom{5}{5}$

(c) Start from n = 0 and go to n = 7 forming the rows described in part (b), one on top of the other. This forms a triangle, which continuing forever is called *Pascal's triangle*.

Question 5. How does Pascal's triangle prove that $\binom{n}{k}$ is always an integer? **Question 6.** How can we use part (a) to prove Theorem B?