UW Math Circle - Homework 7

Recall that an inversion with respect to a circle C centered at O with radius r is a map that takes any point P to a point P^{\prime} that lies on the ray $O P$ such that

$$
|O P| \cdot\left|O P^{\prime}\right|=r^{2}
$$

1. Suppose O is the center of a circle C with radius r. In class we
 proved that an inversion with respect to C takes circles that do not pass through O to circles. Prove (in a very similar fashion!) that the same inversion takes lines that do not pass through O to circles that do pass through O. Notice that we now know what happens to all circles under inversion: if the circle passes through O it is mapped to a line, otherwise it is mapped to a circle that does not pass through O.
2. What does the inverse of a triangle look like? Make sure you consider all cases!
3. Suppose O is the center of a circle C with radius r and l is a line that does not pass through O. Draw a line from O perpendicular to l and let P be the point where this line intersects l. Find the radius of the circle you get when you invert l with respect to C. Write this radius in terms of $|O P|$ and r. What if l does pass through O ? What does your radius become? What does this mean?

4. Suppose O is the center of a circle C with radius r and D is a circle with center A that does not pass through O. Is the inverse of A with respect to C the center of the inverse of D with respect to C ? In other words: is the inverse of the center the center of the inverse?

