UW Math Circle - Homework 9

Recall that for a polynomial written as $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x_{1}+a_{0}$ with roots $r_{1}, r_{2}, \ldots r_{n}$ we have

$$
\begin{aligned}
& r_{1}+r_{2}+\ldots+r_{n}=-\frac{a_{n-1}}{a_{n}} \\
& \left(r_{1} r_{2}+r_{1} r_{3}+\ldots+r_{1} r_{n}\right)+\left(r_{2} r_{3}+r_{2} r_{4}+\ldots+r_{2} r_{n}\right)+\ldots+r_{n-1} r_{n}=\frac{a_{n-2}}{a_{n}} \\
& \vdots \\
& r_{1} r_{2} r_{3} \ldots r_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}
\end{aligned}
$$

these are known as Vieta's formulas.
We also learned the Identity Theorem: if two polynomials P_{1} and P_{2} of degree less than n take the same value at more than n points, then $P_{1}=P_{2}$.

1. Suppose the polynomial $5 x^{3}+4 x^{2}-8 x+6$ has three real roots a, b, and c. Find the value of $a(1+b+c)+b(1+a+c)+c(1+a+b)$.
2. Suppose $P(x)$ is a polynomial such that $P(n) \geq 0$ for infinitely many positive integers n and $P(m) \leq 0$ for infinitely many positive integers m. Show that P is zero everywhere.
3. Find an x, y, and z such that

$$
\begin{aligned}
& x+y+z=17 \\
& x y+y z+x z=94 \\
& x y z=168
\end{aligned}
$$

4. A movie theater is holding a Batman marathon and is showing two Batman movies in a row. Fifty people show up to the first movie and the same fifty people show up to the second one. Prove that if the movie theater has 7 rows of seats, each with ten seats, then at least two people sat in the same row as each other for both movies.

