Problem Set 7

UW Math Circle - Advanced Group

Session 10 (5 December 2013)

1. Use Bertrand's postulate / Chebyshëv's theorem to show that any positive integer can be written as a sum of distinct numbers that are prime or 1 (for example: $10=5+3+2$, $15=11+3+1)$.
2. (a) (Euler's classic problem) Prove or disprove: $n^{2}+n+41$ is prime for all positive integers n.
(b) (Goldbach, 1752) The goal of this problem is to show that there is no polynomial taking only prime values at positive integers.
Suppose that $p(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}$ is a polynomial with integer coefficients. Suppose also that $p(0), p(1), p(2), \ldots$ are all prime. Show that p must be constant. (Hint: Let $q=p(0)$ and consider $p(q), p(2 q), p(3 q), \ldots{ }^{1}$.)
3. Prove that you cannot fit more than 9 discs of diameter 1 in a 3×3 square without overlap.

[^0]
[^0]: ${ }^{1}$ You may also want to use the fact that any nonconstant polynomial eventually goes off to $+\infty$ or $-\infty$ and cannot take on any value infinitely many times.

