Problem Set 7

UW Math Circle - Advanced Group

Session 10 (5 December 2013)

- 1. Use Bertrand's postulate / Chebyshëv's theorem to show that any positive integer can be written as a sum of distinct numbers that are prime or 1 (for example: 10 = 5 + 3 + 2, 15 = 11 + 3 + 1).
- 2. (a) (Euler's classic problem) Prove or disprove: $n^2 + n + 41$ is prime for all positive integers n.
 - (b) (Goldbach, 1752) The goal of this problem is to show that there is no polynomial taking only prime values at positive integers.
 Suppose that p(x) = xⁿ + c_{n-1}xⁿ⁻¹ + ... + c₂x² + c₁x + c₀ is a polynomial with integer coefficients. Suppose also that p(0), p(1), p(2), ... are all prime. Show that p must be constant. (*Hint: Let q = p(0) and consider p(q), p(2q), p(3q), ... ¹.*)
- 3. Prove that you cannot fit more than 9 discs of diameter 1 in a 3×3 square without overlap.

¹You may also want to use the fact that any nonconstant polynomial eventually goes off to $+\infty$ or $-\infty$ and cannot take on any value infinitely many times.