Problem Set 11

UW Math Circle - Advanced Group

Session 16 (6 February 2014)

1. (BAMO 2008) Call a year ultra-even if all of its digits are even. Thus, 2000, 2002, 2004, 2006, and 2008 are all ultra-even years.
(a) In the years between the years 1 and 10000 , what is the longest possible gap between two ultra-even years? Give an example of two ultra-even years that far apart with no ultra-even years between them.
(b) What is the second-shortest possible gap?
(To be written down, as last week.)
2. Suppose $\sigma \in \mathfrak{S}_{n}$. Prove that the order of σ divides the order of \mathfrak{S}_{n}.
3. A fleet of 100 starships of different sizes approaches a Martian spaceport in a line. Martian customs and diplomatic rules require that the largest starship land first, the second-largest starship second, \ldots, and the smallest starship last.
Landing conditions are very difficult. Only two manœuvres are possible:

- Manœuvre A: the front two starships in the line switch places.
- Manœuvre B: the last starship in the line moves to the front.

Prove that the starships can get in the right order by a combination of these moves. (You've just shown that \mathfrak{S}_{n} is generated by (12) and (2 $34 \ldots n 1$).)
4. (Bubble sort is slow) Today we showed that every permutation in \mathfrak{S}_{n} is a product of transpositions of adjacent elements. Prove that any permutation is a product of no more than $\binom{n}{2}=\frac{n(n-1)}{2}$ transpositions of adjacent elements.
Bonus: Find a permutation that cannot be written as a product of fewer than $\binom{n}{2}$ adjacent transpositions, that is, show that we cannot replace $\binom{n}{2}$ by anything smaller in the above problem.

