Problem Set 12

UW Math Circle - Advanced Group

Session 18 (20 February 2014)

1. Consider the curve $y^{2}=x^{3}-x+1$.
(a) Graph it.
(b) Find three points on this curve with integral coordinates, call them P, Q, R.
(c) "Verify" that $(P+Q)+R=P+(Q+R)$.
(d) Can you use these three integral points to find any more?
2. In class, we did an example with square pyramids and squares. Let's consider a similar problem with triangular pyramids. What sizes of triangular pyramids can be reshaped into squares?
(a) Our triangular pyramids will have 1 block in the first layer, 3 in the second layer, 6 in the third layer, etc. Show, by induction, that the number of blocks in an x-level triangular pyramid is

$$
1+3+6+10+\cdots+\frac{x(x+1)}{2}=\frac{x(x+1)(x+2)}{6}
$$

Bonus: Find a combinatorial proof of this. Notice that this is really

$$
\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\cdots+\binom{x+1}{2}=\binom{x+2}{3}
$$

(b) By solving this problem for possible x and letting the side length of the square be y, we should have a cubic

$$
y^{2}=\frac{x(x+1)(x+2)}{6}
$$

We showed that, even though this isn't quite the form of an elliptic curve, we can always transform it into one by a substitution.
(c) $(0,0)$ and $(1,1)$ are solutions. Can you find any others?

