Problem Set 13

UW Math Circle - Advanced Group

Session 19 (6 March 2014)

1. (a) Use Lagrange's theorem to prove Fermat's Little theorem: if a is not divisible by a prime p, then $a^{p-1} \equiv 1(\bmod p)$. (Hint: consider the set $\{1,2,3, \ldots, p-1\}$ with the operation of multiplication modulo p.)
(b) Prove Euler's theorem, a generalisation of Fermat's Little theorem: if a and n are relatively prime, then $a^{\varphi(n)} \equiv 1(\bmod n)$, where $\varphi(n)$ is the number of integers less than n and relatively prime to n.
For example, $\varphi(10)=4$ because $1,3,7,9$ are relatively prime to 10 . By Euler's theorem, this shows that a^{5} has the same last digit as a for all positive integers a.
2. A fleet of 9 starships is again approaching a Martian spaceport in a line. The are able to perform two moves: $(15)(2)(398)(467)$ and $(17835)(2)(4)(69)$. The fleet commander claims that using these moves the ships can get into 4620 possible orders. Prove that the commander is lying or made an error in his calculations.
3. A 4×100 board is covered with 200 domino tiles. Prove that it is possible to divide the board into two parts with a straight cut without cutting through any dominoes.

