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1. Use the Robinson-Schensted correspondence to prove the Erdös-Szekeres theorem: Given any

permutation of 1, 2, . . . ,mn+1, the permutation contains either an increasing subsequence of

length n+ 1 or a decreasing subsequence of length m+ 1. (For example, for m = n = 2, any
permutation of 1, 2, 3, 4, 5 has either an increasing or decreasing subsequence of length 3.)

2. (Erdös-Szekeres game) A and B play a game. The �rst player writes a digit (1 to 9) on the

board, then the second player appends on the right a digit that has not yet been used, etc. A

player loses if he or she creates a sequence that has either an increasing subsequence of length

4 or a decreasing subsequence of length 3.

(a) By the Erdös-Szekeres theorem there will be a loser by the time all digits from 1 to 9 are

placed.

(b) Who has a winning strategy?

(If the 3 in �decreasing subsequence of length 3� is replaced by any larger number, the winning

strategy is unknown!)

3. (MHO 2010) Alex, Bob and Chad are playing a table tennis tournament. During each game,

two boys are playing each other and one is resting. In the next game, the boy who lost rests,

and the boy who was resting plays the winner. By the end of tournament, Alex played a total

of 10 games, Bob played 15 games, and Chad played 17 games. Who lost the second game?
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