# Problem Set 8 Solutions 

UW Math Circle - Advanced Group

Session 14 (23 January 2014)

1. See the official solution, http://www.bamo.org/attachments/bamo2007examsol.pdf.
2. (a) Show that you can dissect a square into 6,7 , or 8 squares, then show that you can dissect a square into 4 squares (adding 3 to the number of squares).
(b) You can dissect a cube into 8 cubes (adding 7). You can also dissect a cube into 27 cubes (adding 26), so you can get $1,1+26,1+2 \cdot 26, \ldots, 1+6 * 26=157<200$. This is a complete set of remainders modulo 7. (We got this bound down to 78 ; the proven minimum is 48.)
3. (a) The $3 \times 3$ table is uniquely determined by the upper left $2 \times 2$ subtable. To see this, fill the upper left $2 \times 2$ subtable. We immediately know everything except the lower right corner. A parity argument shows the lower right corner is also uniquely determined. So, we just count the number of ways to fill the $2 \times 2$ subtable, which is $2^{2 \cdot 2}=16$.
(b) There are no ways to do this: suppose we filled a table with 3 rows and 4 columns in this way. Adding by rows, the sum of all numbers is odd. Adding by columns, it is even.
(c) Similarly to (a), $2^{3 \cdot 3}=512$. In general, for an $m \times n$ table, it is $2^{(m-1)(n-1)}$ if $m \equiv n$ $(\bmod 2)$ and 0 otherwise.
