Problem Set 10 Solutions

UW Math Circle - Advanced Group

Session 16 (6 February 2014)

1. See the official solution, http://www.bamo.org/attachments/bamo2005examsol.pdf.
2. (a) Obviously, if A and B are sets in the plane, then $A \triangle B$ is also a set in the plane.

Associativity: You can convince yourself that $(A \triangle B) \triangle C=A \triangle(B \triangle C)$ by drawing a diagram.
Identity: The empty set.
Inverses: Every set is its own inverse.
(b) \triangle is not an operation on H, that is, if A and B are open sets, then $A \triangle B$ need not be open. For example, take A to be the open disc of radius 2 centered at 0 and B to be the open disc of radius 1 centered at $0 . A \triangle B$ is an annulus that includes its inner boundary but not its outer boundary (so it is not open).
3. (a) Equivalently, we are to find the subgroup of \mathbb{Z} generated by 123, 405, and 321. It is generated by one element, the gcf of those three numbers, which is 3 . So, all floors with number divisible by 3 can be reached.
(b) Suppose this is possible, so there exist buttons $\frac{m_{1}}{n_{1}}, \frac{m_{2}}{n_{2}}, \ldots, \frac{m_{k}}{n_{k}}$ such that every rational number can be reached with them. But let $n=\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. Every floor that can be reached could be written as a fraction with denominator n. However, we cannot reach, for example, floor $\frac{1}{n+1}$. Contradiction. So, this is impossible.

