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1. See the official solution, http://www.bamo.org/attachments/bamo2008examsol.pdf.

2. The order of σ is the least common multiple of the lengths of its cycles. Since σ ∈ Sn, all of
its cycles have length no more than n. Clearly the least common multiple of some numbers
not greater than n is not more than n!.

3. Let a = (1 2) and b = (2 3 4 . . . 100 1). Notice that b99ab = (2 3), b98ab2 = (3 4), etc. Thus we
can perform any transposition of two adjacent elements. As we showed, this means we can
make any permutation.

4. Equivalently, we must find how many transpositions is takes to get from a list of the numbers
1 . . . n (in some order) to a correctly sorted list.

We show by induction that at most
(
n
2

)
transpositions are needed. Base case n = 2 is obvious,

so suppose we know it takes
(
k
2

)
moves to do this for k.

Now consider a permutation of k+1 numbers. We can move k+1 to the end of the list with no
more than k transpositions; then, by the induction hypothesis, we can do

(
k
2

)
transpositions

to order the first k elements in the list without touching k + 1. Thus we have made no more
than

(
k
2

)
+ k =

(
k+1
2

)
transpositions.

Note that the “worst case” is the reversal permutation [nn − 1n − 2 . . . 3 2 1]. There are(
n
2

)
pairs of numbers that are not in the correct order, and each transposition decreases this

quantity by at most 1.
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