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Theorem (Bertrand’s postulate / Chebyshëv’s theorem). For all positive integers n, there is a
prime between n and 2n, inclusively.

We will prove Bertrand’s postulate by carefully analyzing central binomial coefficients. In
particular, we will examine the prime factors of these numbers and see that beyond a lower bound
of 468, Bertrand’s postulate must hold.

Definition. The central binomial coefficients are defined as

Cn =

(
2n

n

)
.

So C1 = 2, C2 = 6, etc.

Lemma 1. For all integers n > 0,

Cn ≥ 4n

2n
.

Proof.

4n = (1 + 1)2n =

2n∑
k=0

(
2n

k

)
= 2 +

2n−1∑
k=1

(
2n

k

)
≤ 2 + (2n− 1)

(
2n

n

)
≤ 2n

(
2n

n

)
.

Lemma 2. For any integer n, none of the prime powers in the prime factorization of Cn exceed
2n.

For example, if n = 5, Cn = 252 = 22 · 32 · 7 = 4 · 9 · 7. None of 4, 9, 7 exceed 2n = 10.

Proof. The number of times a prime p occurs in n! – denote this by νp(n) – is
⌊
n
p

⌋
+
⌊

n
p2

⌋
+
⌊

n
p3

⌋
+. . . .

Notice that the term
⌊

n
pk

⌋
is 0 if pk > n.

Now,

νp (Cn) = νp((2n)!)− 2νp(n!) =

(⌊
2n

p

⌋
− 2

⌊
n

p

⌋)
+

(⌊
2n

p2

⌋
− 2

⌊
n

p2

⌋)
+

(⌊
2n

p3

⌋
− 2

⌊
n

p3

⌋)
+ . . .

If pk > 2n, then the term
(⌊

2n
pk

⌋
− 2

⌊
n
pk

⌋)
; else, this term is at most 1 (by the general fact that

⌊a+ b⌋ − ⌊a⌋ − ⌊b⌋ is 0 or 1). Therefore, νp(Cn) is at most the largest k such that pk ≤ 2n, and
pνp(Cn) ≤ 2n.
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Lemma 3. For any integer n, if a prime p ̸= 2 is between 2n
3 and n, then p does not appear in the

prime factorization of Cn.

Proof. If 2n
3 < p < n, then

⌊
2n
p

⌋
= 2

⌊
n
p

⌋
= 2. If n > 4, then pk > 2n for k ≥ 2. This is also easy

to verify for n ≤ 4.

Definition. Define the primorial function x# to be the product of all primes not greater than x
(define 1# = 1).

Lemma 4. n# < 4n for all n ≥ 1.

Proof. We show this by induction. The cases n = 1, 2 work.
Now assume k# < 4k for all k < n. If n is not prime, then n# = (n − 1)# and so n# =

(n− 1)# ≤ 4n−1 < 4n.
Now we wish to show the inductive case for n prime. Since n > 2, it is odd and we may write

n = 2m+ 1.
Notice that

(
2n+1
n

)
is divisible by all prime numbers greater than n + 1 and less than or equal

to 2n+ 1, that is, it is divisible by (2n+ 1)#/(n+ 1)#.
But also observe that(

2m+ 1

m

)
<

(
2m+ 1

0

)
+

(
2m+ 1

1

)
+ · · ·+

(
2m+ 1

m− 1

)
+

(
2m+ 1

m

)
=

1

2

((
2m+ 1

0

)
+

(
2m+ 1

1

)
+ · · ·+

(
2m+ 1

2m

)
+

(
2m+ 1

2m+ 1

))
=

1

2
· 22m+1 = 4m.

Thus we have shown (2n+ 1)#/(n+ 1)# < 4n. By the inductive hypothesis (n+ 1)# ≤ 4n+1. So,
(2n+ 1)# ≤ 4n · 4n+1 = 42n+1.

Theorem (Bertrand’s postulate / Chebyshëv’s theorem). For all positive integers n, there is a
prime between n and 2n, inclusively.

Proof. Suppose to the contrary that there exists n such that there is no prime between n and 2n.
Consider the prime factors of Cn. Clearly none of them are greater than 2n. In fact, none of them
are greater than or equal to n, since there are no primes between n and 2n. Now, by Lemma 3,
none of them are greater than 2n

3 .

We may assume n > 4 (and check by hand that 1, 2, 3, 4 are not counterexamples), so
√
2n < 2n

3 .

We can divide the prime factors of Cn into two groups: those that are between
√
2n and 2n

3 and

those that are less than
√
2n.

n = pa11 pa22 . . .︸ ︷︷ ︸
p≤

√
2n

. . . pakk︸ ︷︷ ︸
√
2n<p≤ 2n

3

.

Call the left product P1 and the right product P2.
By Lemma 2, none of the terms in P1 exceeds 2n, so P1 ≤ 2n

√
2n.

Now observe that the primes in P2 must all have exponent 1: if p >
√
2n, then p2 > 2n, and

the exponent could not be 2 or greater by Lemma 2. It follows that P2 ≤
(
2n
3

)
! ≤ 42n/3.
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Finally, by Lemma 1, we get

4n

2n
≤ Cn = P1P2 ≤ (2n)

√
2n42n/3.

This can be shown to be true for n = 1, 2, . . . , 467, but false for n ≥ 468.
So we have shown that there is no such n greater than 467. To show that there are no coun-

terexamples less than 468, it suffices to exhibit a sequence of primes beginning from 2 and ending
greater than 467 such that each prime is no more than twice the previous one. Here is such a
sequence:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631.
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