Proof of Bertrand's Postulate

UW Math Circle - Advanced Group

Session 10 (5 December 2013)

Theorem (Bertrand's postulate / Chebyshëv's theorem). For all positive integers n, there is a prime between n and $2 n$, inclusively.

We will prove Bertrand's postulate by carefully analyzing central binomial coefficients. In particular, we will examine the prime factors of these numbers and see that beyond a lower bound of 468 , Bertrand's postulate must hold.

Definition. The central binomial coefficients are defined as

$$
C_{n}=\binom{2 n}{n}
$$

So $C_{1}=2, C_{2}=6$, etc.
Lemma 1. For all integers $n>0$,

$$
C_{n} \geq \frac{4^{n}}{2 n} .
$$

Proof.

$$
4^{n}=(1+1)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k}=2+\sum_{k=1}^{2 n-1}\binom{2 n}{k} \leq 2+(2 n-1)\binom{2 n}{n} \leq 2 n\binom{2 n}{n}
$$

Lemma 2. For any integer n, none of the prime powers in the prime factorization of C_{n} exceed $2 n$.

For example, if $n=5, C_{n}=252=2^{2} \cdot 3^{2} \cdot 7=4 \cdot 9 \cdot 7$. None of $4,9,7$ exceed $2 n=10$.
Proof. The number of times a prime p occurs in $n!$ - denote this by $\nu_{p}(n)-$ is $\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\ldots$. Notice that the term $\left\lfloor\frac{n}{p^{k}}\right\rfloor$ is 0 if $p^{k}>n$.

Now,
$\nu_{p}\left(C_{n}\right)=\nu_{p}((2 n)!)-2 \nu_{p}(n!)=\left(\left\lfloor\frac{2 n}{p}\right\rfloor-2\left\lfloor\frac{n}{p}\right\rfloor\right)+\left(\left\lfloor\frac{2 n}{p^{2}}\right\rfloor-2\left\lfloor\frac{n}{p^{2}}\right\rfloor\right)+\left(\left\lfloor\frac{2 n}{p^{3}}\right\rfloor-2\left\lfloor\frac{n}{p^{3}}\right\rfloor\right)+\ldots$ If $p^{k}>2 n$, then the term $\left(\left\lfloor\frac{2 n}{p^{k}}\right\rfloor-2\left\lfloor\frac{n}{p^{k}}\right\rfloor\right)$; else, this term is at most 1 (by the general fact that $\lfloor a+b\rfloor-\lfloor a\rfloor-\lfloor b\rfloor$ is 0 or 1$)$. Therefore, $\nu_{p}\left(C_{n}\right)$ is at most the largest k such that $p^{k} \leq 2 n$, and $p^{\nu_{p}\left(C_{n}\right)} \leq 2 n$.

Lemma 3. For any integer n, if a prime $p \neq 2$ is between $\frac{2 n}{3}$ and n, then p does not appear in the prime factorization of C_{n}.
Proof. If $\frac{2 n}{3}<p<n$, then $\left\lfloor\frac{2 n}{p}\right\rfloor=2\left\lfloor\frac{n}{p}\right\rfloor=2$. If $n>4$, then $p^{k}>2 n$ for $k \geq 2$. This is also easy to verify for $n \leq 4$.

Definition. Define the primorial function $x \#$ to be the product of all primes not greater than x (define 1\# = 1).

Lemma 4. $n \#<4^{n}$ for all $n \geq 1$.
Proof. We show this by induction. The cases $n=1,2$ work.
Now assume $k \#<4^{k}$ for all $k<n$. If n is not prime, then $n \#=(n-1) \#$ and so $n \#=$ $(n-1) \# \leq 4^{n-1}<4^{n}$.

Now we wish to show the inductive case for n prime. Since $n>2$, it is odd and we may write $n=2 m+1$.

Notice that $\binom{2 n+1}{n}$ is divisible by all prime numbers greater than $n+1$ and less than or equal to $2 n+1$, that is, it is divisible by $(2 n+1) \# /(n+1) \#$.

But also observe that

$$
\begin{aligned}
\binom{2 m+1}{m} & <\binom{2 m+1}{0}+\binom{2 m+1}{1}+\cdots+\binom{2 m+1}{m-1}+\binom{2 m+1}{m} \\
& =\frac{1}{2}\left(\binom{2 m+1}{0}+\binom{2 m+1}{1}+\cdots+\binom{2 m+1}{2 m}+\binom{2 m+1}{2 m+1}\right) \\
& =\frac{1}{2} \cdot 2^{2 m+1}
\end{aligned}
$$

Thus we have shown $(2 n+1) \# /(n+1) \#<4^{n}$. By the inductive hypothesis $(n+1) \# \leq 4^{n+1}$. So, $(2 n+1) \# \leq 4^{n} \cdot 4^{n+1}=4^{2 n+1}$.

Theorem (Bertrand's postulate / Chebyshëv's theorem). For all positive integers n, there is a prime between n and $2 n$, inclusively.

Proof. Suppose to the contrary that there exists n such that there is no prime between n and $2 n$. Consider the prime factors of C_{n}. Clearly none of them are greater than $2 n$. In fact, none of them are greater than or equal to n, since there are no primes between n and $2 n$. Now, by Lemma 3, none of them are greater than $\frac{2 n}{3}$.

We may assume $n>4$ (and check by hand that $1,2,3,4$ are not counterexamples), so $\sqrt{2 n}<\frac{2 n}{3}$. We can divide the prime factors of C_{n} into two groups: those that are between $\sqrt{2 n}$ and $\frac{2 n}{3}$ and those that are less than $\sqrt{2 n}$.

$$
n=\underbrace{p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots}_{p \leq \sqrt{2 n}} \underbrace{\ldots p_{k}^{a_{k}}}_{\sqrt{2 n}<p \leq \frac{2 n}{3}}
$$

Call the left product P_{1} and the right product P_{2}.
By Lemma 2, none of the terms in P_{1} exceeds $2 n$, so $P_{1} \leq 2 n^{\sqrt{2 n}}$.
Now observe that the primes in P_{2} must all have exponent 1: if $p>\sqrt{2 n}$, then $p^{2}>2 n$, and the exponent could not be 2 or greater by Lemma 2. It follows that $P_{2} \leq\left(\frac{2 n}{3}\right)!\leq 4^{2 n / 3}$.

Finally, by Lemma 1, we get

$$
\frac{4^{n}}{2 n} \leq C_{n}=P_{1} P_{2} \leq(2 n)^{\sqrt{2 n}} 4^{2 n / 3}
$$

This can be shown to be true for $n=1,2, \ldots, 467$, but false for $n \geq 468$.
So we have shown that there is no such n greater than 467 . To show that there are no counterexamples less than 468 , it suffices to exhibit a sequence of primes beginning from 2 and ending greater than 467 such that each prime is no more than twice the previous one. Here is such a sequence:

$$
2,3,5,7,13,23,43,83,163,317,631
$$

