Proof of Bertrand's Postulate

UW Math Circle – Advanced Group

Session 10 (5 December 2013)

Theorem (Bertrand's postulate / Chebyshëv's theorem). For all positive integers n, there is a prime between n and 2n, inclusively.

We will prove Bertrand's postulate by carefully analyzing central binomial coefficients. In particular, we will examine the prime factors of these numbers and see that beyond a lower bound of 468, Bertrand's postulate must hold.

Definition. The central binomial coefficients are defined as

$$C_n = \binom{2n}{n}.$$

So $C_1 = 2$, $C_2 = 6$, etc.

Lemma 1. For all integers n > 0,

$$C_n \ge \frac{4^n}{2n}$$

Proof.

$$4^{n} = (1+1)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} = 2 + \sum_{k=1}^{2n-1} \binom{2n}{k} \le 2 + (2n-1)\binom{2n}{n} \le 2n\binom{2n}{n}.$$

Lemma 2. For any integer n, none of the prime powers in the prime factorization of C_n exceed 2n.

For example, if n = 5, $C_n = 252 = 2^2 \cdot 3^2 \cdot 7 = 4 \cdot 9 \cdot 7$. None of 4, 9, 7 exceed 2n = 10.

Proof. The number of times a prime p occurs in n! – denote this by $\nu_p(n)$ – is $\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots$. Notice that the term $\left\lfloor \frac{n}{p^k} \right\rfloor$ is 0 if $p^k > n$. Now,

$$\nu_p(C_n) = \nu_p((2n)!) - 2\nu_p(n!) = \left(\left\lfloor \frac{2n}{p} \right\rfloor - 2\left\lfloor \frac{n}{p} \right\rfloor \right) + \left(\left\lfloor \frac{2n}{p^2} \right\rfloor - 2\left\lfloor \frac{n}{p^2} \right\rfloor \right) + \left(\left\lfloor \frac{2n}{p^3} \right\rfloor - 2\left\lfloor \frac{n}{p^3} \right\rfloor \right) + \dots$$

If $p^k > 2n$, then the term $\left(\left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor \right)$; else, this term is at most 1 (by the general fact that $\lfloor a + b \rfloor - \lfloor a \rfloor - \lfloor b \rfloor$ is 0 or 1). Therefore, $\nu_p(C_n)$ is at most the largest k such that $p^k \leq 2n$, and $p^{\nu_p(C_n)} \leq 2n$.

Lemma 3. For any integer n, if a prime $p \neq 2$ is between $\frac{2n}{3}$ and n, then p does not appear in the prime factorization of C_n .

Proof. If $\frac{2n}{3} , then <math>\left\lfloor \frac{2n}{p} \right\rfloor = 2 \left\lfloor \frac{n}{p} \right\rfloor = 2$. If n > 4, then $p^k > 2n$ for $k \ge 2$. This is also easy to verify for $n \le 4$.

Definition. Define the primorial function x# to be the product of all primes not greater than x (define 1# = 1).

Lemma 4. $n\# < 4^n$ for all $n \ge 1$.

Proof. We show this by induction. The cases n = 1, 2 work.

Now assume $k\# < 4^k$ for all k < n. If *n* is not prime, then n# = (n-1)# and so $n\# = (n-1)\# \le 4^{n-1} < 4^n$.

Now we wish to show the inductive case for n prime. Since n > 2, it is odd and we may write n = 2m + 1.

Notice that $\binom{2n+1}{n}$ is divisible by all prime numbers greater than n+1 and less than or equal to 2n+1, that is, it is divisible by (2n+1)#/(n+1)#.

But also observe that

$$\binom{2m+1}{m} < \binom{2m+1}{0} + \binom{2m+1}{1} + \dots + \binom{2m+1}{m-1} + \binom{2m+1}{m}$$

= $\frac{1}{2} \left(\binom{2m+1}{0} + \binom{2m+1}{1} + \dots + \binom{2m+1}{2m} + \binom{2m+1}{2m+1} \right)$
= $\frac{1}{2} \cdot 2^{2m+1}$ = 4^m .

Thus we have shown $(2n+1)\#/(n+1)\# < 4^n$. By the inductive hypothesis $(n+1)\# \le 4^{n+1}$. So, $(2n+1)\# \le 4^n \cdot 4^{n+1} = 4^{2n+1}$.

Theorem (Bertrand's postulate / Chebyshëv's theorem). For all positive integers n, there is a prime between n and 2n, inclusively.

Proof. Suppose to the contrary that there exists n such that there is no prime between n and 2n. Consider the prime factors of C_n . Clearly none of them are greater than 2n. In fact, none of them are greater than or equal to n, since there are no primes between n and 2n. Now, by Lemma 3, none of them are greater than $\frac{2n}{3}$.

We may assume n > 4 (and check by hand that 1, 2, 3, 4 are not counterexamples), so $\sqrt{2n} < \frac{2n}{3}$. We can divide the prime factors of C_n into two groups: those that are between $\sqrt{2n}$ and $\frac{2n}{3}$ and those that are less than $\sqrt{2n}$.

$$n = \underbrace{p_1^{a_1} p_2^{a_2} \dots}_{p \le \sqrt{2n}} \underbrace{\dots p_k^{a_k}}_{\sqrt{2n}$$

Call the left product P_1 and the right product P_2 .

By Lemma 2, none of the terms in P_1 exceeds 2n, so $P_1 \leq 2n^{\sqrt{2n}}$.

Now observe that the primes in P_2 must all have exponent 1: if $p > \sqrt{2n}$, then $p^2 > 2n$, and the exponent could not be 2 or greater by Lemma 2. It follows that $P_2 \leq \left(\frac{2n}{3}\right)! \leq 4^{2n/3}$.

Finally, by Lemma 1, we get

$$\frac{4^n}{2n} \le C_n = P_1 P_2 \le (2n)^{\sqrt{2n}} 4^{2n/3}.$$

This can be shown to be true for n = 1, 2, ..., 467, but false for $n \ge 468$.

So we have shown that there is no such n greater than 467. To show that there are no counterexamples less than 468, it suffices to exhibit a sequence of primes beginning from 2 and ending greater than 467 such that each prime is no more than twice the previous one. Here is such a sequence:

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631.