
A lesson in classical cryptography

Matthew Campagna
Cristian Ilac

Date: 9 January 2014

Outline

• What is Cryptography?

• The Ceasar cipher

• Monoalphabetic Cipher

• What is Cryptology?

• Freqeuncy analysis using monocount.

• Transposition Cipher

• Polyalphabetic Cipher

• Index of Coincidence

1 What is cryptography

We are not intending to provide a full history of cryptography, see the Code Book and the Puzzle Palace
for two separate views. The Code Book provides a global history of cryptography as it has evolved through
many cultures and civilizations; and the Puzzle Palace provides the historical development of cryptanalysis
in America.

’Crypto comes from the Greek word ’krpyte’ meaning hidden or vault; and graphy comes from ’graphik’
meaning writing. For us we can define cryptography for our purposes.

Definition 1.1. Cryptography is the science of writing messages that no one except the intended receiver
can read.

In general we use Cryptography in information systems to provide some critical security services we have
in the physical world.

Definition 1.2. Confidentiality is the property that the contents of protected messages cannot be read by
un-authorized recipients.

Definition 1.3. Data-Integrity is the property that the contents of a protected message cannot be altered
without detection.

Definition 1.4. Authentication is the property that one entity can verify the entity of another is who/what
they claim to be.

Definition 1.5. Non-repudiation is the property that prevents an entity from denying a previous actions,
commitments or messages.

We will start with Confidentiality - keeping a secret secret.

1

2 Monoalphabetic Ciphers

Definition 2.1. Monoalphabetic Ciphers are ciphers that use a single letter substitution. The most famous
of these is the Ceasar Cipher

2.1 The Ceasar Cipher

Definition 2.2. Ceasar Cipher is a simple monoalphabetic cipher that replaces the intended character by
a three character shift.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

D E F G H I J K L M N O P Q R S T U V W X Y Z - A B C

CAESAR BEWARE OF BRUTUS

FDHVDUCEHZDUHCRICEUXWXV

Well, now that we know what a Ceasar cipher is we can just shift it back three characters.

What if it is a randomly selected shift?

XLDSPXLDTNCKTCKQEY

Like any secret, you might want to know, how good is the security of my message? You might also want
to know, how do you measure security?

Well, you could try just random shifts of this message.

XLDSPXLDTNCKTCKQEY

YMETQYMEUODLUDLRFZ

ZNFURZNFVPEMVEMSG

OGVS OGWQFNWFNTHA

APHWTAPHXRGOXGOUIB

BQIXUBQIYSHPYHPVJC

CRJYVCRJZTIQZIQWKD

DSKZWDSK UJR JRXLE

ETL XETLAVKSAKSYMF

FUMAYFUMBWLTBLTZNG

GVNBZGVNCXMUCMU OH

HWOC HWODYNVDNVAPI

IXPDAIXPEZOWEOWBQJ

JYQEBJYQF PXFPXCRK

KZRFCKZRGAQYGQYDSL

L SGDL SHBRZHRZETM

MATHEMATICS IS FUN

NBUIFNBUJDTAJTAGVO

OCVJGOCVKEUBKUBHWP

PDWKHPDWLFVCLVCIXQ

QEXLIQEXMGWDMWDJYR

RFYMJRFYNHXENXEKZS

SGZNKSGZOIYFOYFL T

TH OLTH PJZGPZGMAU

UIAPMUIAQK HQ HNBV

VJBQNVJBRLAIRAIOCW

WKCROWKCSMBJSBJPDX

XLDSPXLDTNCKTCKQEY

2

If you consider the above, you will notice there are 26 possible (non-trivial) encryptions of the message.
Each of these can be considered a separate key, where the key defines the amount to shift.

How did we discover the plaintext?

We technically decrypted the message under each of the 26 keys, and then examined the output, and
picked out the one that looked like plaintext.

There is a general principle in cryptography attributed to Auguste Kerckhoff that states that a crypto-
graphic systems should remain secure against an adversary that knows everything about the system except
the cryptographic key. For everything we consider, we will assume that our adversary knows everything but
the key.

Definition 2.3. A symmetric key cipher is a function E that takes a fixed length key parameter k, and a
plaintext value pt and outputs a ciphertext value E(k, pt) = ct, and an inverse function D that takes a fixed
length key parameter k and a ciphertext value ct, such that pt = D(k,E(k, pt)).

A key comes from a typically finite set called the keyspace. And we can then ask how big is the keyspace?
If we just need to try all the keys, then we do that under the decrypt function and see if we get anything
that looks like plaintext.

The size of the keyspace is one way to measure the security, and is infact an upper bound on the security.

Definition 2.4. The strength of a cryptographic algorithm is the amount of work required to break the
security provided by that algorithm using the best known attack.

Well, for the cipher above the key space is the number of non-trivial shifts. 26 is not a big number!

Definition 2.5. Cryptanalysis is the study and practice of breaking security properties provided by cryp-
togaphic methods.

In general there are a variety of advantages that an adversary might have when performing a cryptanalysis
attack. For symmetric key ciphers under a fixed key we can categorize these.

Ciphertext only attacks are where the adversary only sees encrypted plaintext and attempts to attack
the system.

Known plaintext attacks are where the adversary knows pairs of encrypted plaintext and the corre-
sponding ciphertexts.

Chosen plaintext attacks are where the adversary can get arbitrary selected plaintext values encrypted.

Adaptive plaintext attacks are a variation of chosen plaintext attacks where the adversary can
modify plaintext value to be encrypted based on previous chosen plaintext ciphertext pairs.

There are other methods to defeating the security of cryptosystem the most common of which is imple-
mentation errors, most likely followed by coercion.

It is worth closing the circle here with one more definition.

Definition 2.6. Cryptology is the union of the two fields.

2.2 Random Monoalphabetic Ciphers

Definition 2.7. A random monoalphabetic cipher is a random permuation of the alphabet space.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

- X U R O L I F C Z W T Q N K H E B Y S P M J G D A V

3

So, we might ask, what is the key here? And how big is the keysize?
Well, it can be any permutation on 27 characters.

27! ≈ 293

for each permutation p on the alphabet{

computed_plaintext = decrypt(p, ciphertext){

if(is_english(computed_plaintext))

print computed_plaintext, p

}

}

How big is that? Well how many permutations do you think you could write down in a second? How
about a computer? Suppose you could do 4 Billion a second (roughly 232), how long would it take to try all
the guesses?

293−32 = 261 seconds = 73, 117, 802, 169 years
A long time.

Ideas?
Let’s take a look of at a couple of messages.

Z VSGOAHDDGOLSXGP RGAHVG VSGZTHVLGDSHXGP RGAHVNTVY

Y GV LGZ GCWSRSGLWSGXHLWGAHMGDSHYGZGTVOLSHYGCWSRSGLWSRSGTOGVGXHLWGHVYGDSHFSGHGLRHTD

CTOY AGTOGLWSGRSCHRYGM IGZSLGP RGHGDTPSLTASG PGDTOLSVTVZGCWSVGM IYGWHFSGXRSPSRRSYGL GLHDN

CSGAIOLGIOSGLTASGCTOSDMGHVYGP RSFSRGRSHDTJSGLWHLGLWSGLTASGTOGHDCHMOGRTXSGL GY GRTZWL

XS XDSGCW GLWTVNGLWSMGNV CGSFSRMLWTVZGHRSGHGZRSHLGHVV MHVBSGL GLW OSG PGIOGCW GY

3 Cryptanalysis

If I gave you an hour or so, do you think I you could recover the plaintext or the key?
What did we do in the first case of the rotation of the alphabet?
Well we tried all the keys and wrote them out, and then we recognized the plaintext.
This seems obvious to us, but is really a sophisticated operation of pattern recognition.
You could count the letters?
Well, you could model your plaintext on letter frequencies you see in text.

Definition 3.1. A frequency histogram is a list letters and a count of its frequency

From a frequency count (or a monoalphabetic count, count of single character occurences) we can build
a frequency distribution table.

Monocount campagna$./monocount infile.txt

A 47063 B 8139 C 13225 D 27483

E 72879 F 13154 G 12120 H 38359

I 39782 J 622 K 4634 L 21538

M 14922 N 41309 O 45116 P 9452

Q 655 R 35957 S 36770 T 52395

U 16216 V 5065 W 13835 X 665

Y 11849 Z 213 - 125771

4

A 0.066362 B 0.011477 C 0.018648 D 0.038753

E 0.102764 F 0.018548 G 0.017090 H 0.054089

I 0.056095 J 0.000877 K 0.006534 L 0.030370

M 0.021041 N 0.058248 O 0.063616 P 0.013328

Q 0.000924 R 0.050702 S 0.051848 T 0.073880

U 0.022866 V 0.007142 W 0.019508 X 0.000938

Y 0.016708 Z 0.000300 - 0.177345

- E T A O N I H S R D L U M W C F G Y P B V K X Q J Z

This is a frequency on A Tale of Two Cities by Charles Dickens.
What that means is that we can do a frequency count on our ciphertexts

A 9 B 1 C 11 D 13

E 0 F 4 G 94 H 28

I 5 J 1 K 0 L 29

M 8 N 4 O 14 P 8

Q 0 R 20 S 46 T 20

U 0 V 20 W 18 X 8

Y 12 Z 8 - 27

A 0.022059 B 0.002451 C 0.026961 D 0.031863

E 0.000000 F 0.009804 G 0.230392 H 0.068627

I 0.012255 J 0.002451 K 0.000000 L 0.071078

M 0.019608 N 0.009804 O 0.034314 P 0.019608

Q 0.000000 R 0.049020 S 0.112745 T 0.049020

U 0.000000 V 0.049020 W 0.044118 X 0.019608

Y 0.029412 Z 0.019608 - 0.066176

G S L H [V T R W O D Y C A Z X P M I N F J B U Q K E

Ok, so we can try straight substitution and see what we get?

- E T A O N I H S R D L U M W C F G Y P B V K X Q J Z

G S L H [V T R W O D Y C A Z X P M I N F J B U Q K E

implies the key is

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H F X D S P M R T K B Y A V - N Q O W L C J Z U I E G

So, let’s try a decrypt....
How does this look

ONE RMADD RTEC FOH MAN ONE WIANT DEAC FOH MANPINL

LO NOT WO USEHE TSE CATS MAG DEAL WO INRTEAL USEHE TSEHE IR NO CATS ANL DEABE A THAID

UIRLOM IR TSE HEUAHL GOY WET FOH A DIFETIME OF DIRTENINW USEN GOYL SABE CHEFEHHEL TO TADP

UE MYRT YRE TIME UIREDG ANL FOHEBEH HEADIVE TSAT TSE TIME IR ADUAGR HICE TO LO HIWST

CEOCDE USO TSINP TSEG PNOU EBEHGTSINW AHE A WHEAT ANNOGANKE TO TSORE OF YR USO LO

5

Hmm, let’s just take a look at the first one
Let’s assume the first how many are correct ONE looks good, and so does MAN.
Let’s look at the second line? NOT and TSE. Well NOT looks OK, so we think ONE MA and T as well as -

are properly decrypting
If we go through the most frequent letters, and perhaps other ones that obivious look good we can start

marking our initial decrypt key and try changing some.

- E T A O N I H S R D, M

Ok, so out of these by visual inpsection the decrypt locations for - E T A O N I and M look right. That
is pretty good. Lets make some notations.

X X X X X X X X X X X X

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H F X D S P M R T K B Y A V - N Q O W L C J Z U I E G

H S T A V - L G

? ? ? ?

TSE is begging us to make the conclusion that S is incorrect and that whatever was decrypted to S should
have decrypted to H.

Ok, what about the double letters ”DD” and ”HH”? Most commond doubles are ee, ll, ss, oo, tt, ff, rr,
nn, pp, and cc, Not ”dd” or ’hh’. So we can also assume these are wrong.

So, instead of ’dd’ it is like ’ee’ or ’ll’. Since we are asuming MA are correct ?MAEE makes little sense,
wehre ?MALL is begging us to make another guess for ? = S. Let’s make these changes to our key guesses.

Ok, and one more, FOH. What was previously mapping to H (R) should be mapping to R.

X X X X X X X X X X X X

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H F X D S P M R T K B Y A V - N Q O W L C J Z U I E G

H S T A V - L G

? ? ? ?

W (TSE --> THE)

R (FOH --> FOR)

D (RMADD --> RMALL)

O (RMALL --> SMALL)

==

H F X D S P M W T K B D A V - N Q R O L C J Z U I E G

Ok, before doing a sample decrypt note that we have some duplication in the key for D and no Y, so let’s
change that questionmark D to a Y.

X X X X X X X X X X X X

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H F X D S P M R T K B Y A V - N Q O W L C J Z U I E G

H S T A V - L G

? ? ? ? ?

W D R O

==

H F X Y S P M W T K B D A V - N Q R O L C J Z U I E G

Let’s try another decrypt under this second.guess.key.

ONE SMALL STEC FOR MAN ONE WIANT LEAC FOR MANPIND

DO NOT WO UHERE THE CATH MAG LEAD WO INSTEAD UHERE THERE IS NO CATH AND LEABE A TRAIL

6

UISDOM IS THE REUARD GOY WET FOR A LIFETIME OF LISTENINW UHEN GOYD HABE CREFERRED TO TALP

UE MYST YSE TIME UISELG AND FOREBER REALIVE THAT THE TIME IS ALUAGS RICE TO DO RIWHT

CEOCLE UHO THINP THEG PNOU EBERGTHINW ARE A WREAT ANNOGANKE TO THOSE OF YS UHO DO

Let’s mark off the right letter with an O now.

O O O O O O O O O O O O O

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H F X Y S P M W T K B D A V - N Q R O L C J Z U I E G

H S P W T D A V - R O L G

X (STEC --> STEP)

Z (WIANT --> GIANT)

N (MANPIND --> MANKIND)

C (UHERE --> WHERE)

M (MAG --> MAY)

F (LEABE --> LEAVE)

===

H F X Y S P Z W T K N D A V - X Q R O L C F C U M E G

2 2 2

Ok, again we need to do some clean-up on some of these repeats that we have no confidence in. An
inspection shows that we have two F, X, Cs but no B, I, Js. So let’s just pop them into a new key.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H B I Y S P Z W T K N D A V - X Q R O L J F C U M E G

Let’s call it third.guess.key and try another decrypt.

ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND

DO NOT GO WHERE THE PATH MAY LEAD GO INSTEAD WHERE THERE IS NO PATH AND LEAVE A TRAIL

WISDOM IS THE REWARD YOC GET FOR A LIFETIME OF LISTENING WHEN YOCD HAVE PREFERRED TO TALK

WE MCST CSE TIME WISELY AND FOREVER REALIUE THAT THE TIME IS ALWAYS RIPE TO DO RIGHT

PEOPLE WHO THINK THEY KNOW EVERYTHING ARE A GREAT ANNOYANBE TO THOSE OF CS WHO DO

OK, we are pretty close now so, let’s do the same process again?

O O O O O O O O O O O O O O O O O O O O

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H B I Y S P Z W T K N D A V - X Q R O L J F C U M E G

H Y S P Z W T N D A V - X R O L F C M G

I (YOC --> YOU)

J (REALIUE --> REALIZE)

B (ANNOYANBE --> ANNOYANCE)

===

H B I Y S P Z W T K N D A V - X Q R O L I F C U M J G

2

Again we have to de-duped the I for an E, and we get the key.

7

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

H E B Y S P Z W T K N D A V - X Q R O L I F C U M J G

Our fourth guessed key, let’s try a decrypt.

ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND

DO NOT GO WHERE THE PATH MAY LEAD GO INSTEAD WHERE THERE IS NO PATH AND LEAVE A TRAIL

WISDOM IS THE REWARD YOU GET FOR A LIFETIME OF LISTENING WHEN YOUD HAVE PREFERRED TO TALK

WE MUST USE TIME WISELY AND FOREVER REALIZE THAT THE TIME IS ALWAYS RIPE TO DO RIGHT

PEOPLE WHO THINK THEY KNOW EVERYTHING ARE A GREAT ANNOYANCE TO THOSE OF US WHO DO

Ok, so that clearly did not take 293 operations to do.
This is kind of unweildy as a cipher.

• Need to share the entire alphabet, and that is tough to memorize.

• Is not as secure as a key space size 27!.

• Easily broken by simple frequency counts.

4 Transposition Ciphers

Transposition ciphers are fairly simple concepts. Roughly they are defined to be systematic re-ordering of
the plaintext so that the message becomes unintelligible. A simple exmaple makes this clear.

PRINCIPLES HAVE NO REAL FORCE EXCEPT WHEN ONE IS WELL FED

PI EOETN EE

RPHNARX ILD

ILAOLCCWOSL

NEV EEHN

CSERF PEEWF

PI EOETN EERPHNARX ILDILAOLCCWOSLNEV EEHN CSERF PEEWF

The above is a simple vertical transposition. Substitution ciphers can have have numberous different
layouts some commonly categorized ones are depicted below

ABCDEF EJOTY ABFGOP ZYXWVU

GHIJKL DINSX CEHNQX OPQRST

MNOPQR CHMRW DIMRWY NMLKJI

STUVWX BGLQV JLSVZ CDEFGH

YZ AFKPUZ KTU BA

These by themselves are not secure, and it is diffcult to separate the cipher form the keyspace. Rather,
transpositions form a building block for other schemes.

A quick observation is that a frequency count will reveal a similar count as plaintext.

8

Let’s examine a simple vertical transposition cipher. The key here could be considered the length, or
how many letters (or units of plaintext) do we right vertically down before beginning a new column. We can
think of this as a depth (or width if we have a transposition cipher).

We can break this cipher by simple exhaustion of the keyspace, assuming it is relatively small (which in
general it must be to accomodate messages of the length we typically send and receive.)

57 = 3*19 + 0 57 = 4*14 + 1 57 = 5*11 + 2

PI EOETN EERPHNARX PI EOETN EERPH PI EOETN EE

ILDILAOLCCWOSLNEV NARX ILDILAOL RPHNARX ILD

EEHN CSERF PEEWF CCWOSLNEV EEH ILAOLCCWOSL

N CSERF PEEWF NEV EEHN

CSERF PEEWF

5 Polyalphabetic Ciphers

Let’s take a look at another type of cipher called a Polyalphabetic Cipher.

Definition 5.1. A polyalphabetic substitution cipher is a block cipher with block length t over an alphabet
A having the following properties:

• the key space K consists of all ordered sets of t permutations (p1, p2, . . . , pt), where each permutation
pi is defined on the set A

• encryption of a block of a message m = (m1,m2, . . .mt) under the key e = (p1, p2, . . . , pt) is given by
Ee(m) = (p1(m1), p2(m2), . . . , pt(mt)) and

• the decryption key associated with e = (p1, p2, . . . , pt) is d = (p−11 , p−12 , . . . , p−1t).

The first of this type was known as the Vigenére cipher

Example 5.2. (Vigenére cipher) Let A = {A,B,C, . . . Z} and define 3 mapping functions (p1, p2, p3), where
p1 maps each letter to the letter three positions to its right in the alphabet, p2 to the one seven positions to
its right, and p3 ten positions to its right. If

m = THI SCI PHE RIS CER TAI NLY NOT SEC URE

then,

c = E(m) = WOS VJS SOO UPC FLB WHS QSI QVD VLM XYO:

Well, one of the nice things about a Polyalphabetic Cipher is the key can be made fairly convenient, like
”MATHEMATICS” and we can think about adding the letters modulo 27, by assuming an index

A = 0x00 B = 0x01 C = 0x02 . . . Z = 0x1A, - = 0x0B

So, we can think about encrypting a message

THERE IS NO FRIGATE LIKE A BOOK TO TAKE US LANDS AWAY NOR ANY COURSERS LIKE A PAGE OF PRANC

+MATHEMATICSMATHEMATICSMATHEMATICSMATHEMATICSMATHEMATICSMATHEMATICSMATHEMATICSMATHEMATICSMAT

===

EHXYILIKHPFLFJPKMTXHN WESHDNOGSBK LHOQ M BCMNWZDMWTFBE RSHRJ VWWIDEJZDXICMBSLPTNILOYHRIMNV

9

5.1 Cryptanalysis of Polyalphabetic Ciphers

Well let’s examine another bit of ciphertext.

NOADRVYMOYUREMRTVKPDXEQTKQQTXYQ@297KJHKTD FAWBSMGLLOSTKKCMG8UTMPSUQAWXLWAKJVQWUS

EIZYJ’ZAOOMSMMZGQIVXLOSTNKILCE1IFTNCIHH Q N WBENOY OYBJJDMGK1IFTNCIHH Q RIFEYHCY

LBRE GW-XLLWNLRVYMOXAOPARQWHXFORRXLNZAM8UTMPSUQAWXLSRUJQDHCYLLV ZV6QHSHAETKJVHGX

MSAGRQWHSTCK YJU6QHSHAETKJVHGHCI RQWHWGAE2BKBMIGSEHRTNKDATJLOSTVGIXPAC@IYRJRLOXG

EDRKJZVVSNESHIGQBG8HEMASFQVCLTI RDVNCJQ GL7YVHKXCEMUCNQOCAZGMX TVKHSEOMAWCLMB8H

EMPWTVHPDX TH PXHSACEPMRVYMOGEHRKRYRFO8UNMLZQHAOLTEMIWTZWSSHAETJQQNPJLLVDWBJPTSA

RRLWPJHDXCIAXRVYIHSDOZYRQW-XLD

Well, just for fun, let’s do a monocount on the ciphertext.

A 25229 B 26711 C 18767 D 21223

E 29993 F 26731 G 23767 H 33863

I 21280 J 18912 K 22418 L 28721

M 36313 N 16477 O 24994 P 20339

Q 33075 R 32938 S 27538 T 42939

U 25460 V 27400 W 24552 X 20977

Y 20002 Z 20255 - 37488

A 0.035616 B 0.037708 C 0.026494 D 0.029961

E 0.042341 F 0.037736 G 0.033552 H 0.047805

I 0.030041 J 0.026698 K 0.031648 L 0.040546

M 0.051263 N 0.023261 O 0.035284 P 0.028713

Q 0.046692 R 0.046499 S 0.038876 T 0.060617

U 0.035942 V 0.038681 W 0.034660 X 0.029613

Y 0.028237 Z 0.028594 - 0.052922

T [M H Q R E L S V F B U A O W G K I D X P Z Y J C N

Little peeks at T and -. Nothing really jumps out?
Any ideas?
Let’s break this into two problems:

1. How wide is our block?

2. Solve each permuation (or shift in our simple case) independently?

5.2 How wide is our block

We can make the following observation about the english language - because the letters are not distributed
evenly in plaintext the probability that we select two letters from the plaintext and they are the same
(coincidence) is higher than if we selected two letters at random. We only need to devise a method of
mearuring this.

William Freidman referred to this as the Index of Coincedence.

Definition 5.3. The index of coincidence is the ratio of observed coincedence to what we might expect at
random.

XC = Pr(Observed)/Pr(Random)

So, let’s think about just the letter A in out alphabet of 27 characters (all upper case letters and the
space character). And suppose it occure 66 times in 1000 character text (in fact that is the frequency we
counted in the monocount.c program). So, what is the probability that we select an A at random?

10

66/1000

So, the probability that we select the second letter from the remaining plaintext at random is now

65/999

So, in all the probability is (
66

1000

)
·
(

65

999

)
=
(nA
N

)
·
(
nA − 1

N − 1

)
Here N denotes the total number of characters, and nA the number of times A appears in that text.
So, the overall index of coincendence can be computed as the sum of these values

IC =
∑
α∈A

(nα
N

)
·
(
nα − 1

N − 1

)
So, what do we expect to be in the index of conicidence?

We can compute it from our previous monoalphabetic counting as

ICmonoalphabetic =
∑
α∈A

f2α

where, fα is the frequency computed in the monoalphabetic counts.
When this is computed on the Tale of Two Cities (previously withheld output) it is 0.075844.
Technically this value is normalized by multiplying by the size of the alphabet. This is called κplaintext.

Another difference you will find here compared to much of the open literature is the use of the space character.
The theory remains the same however when using just the 26 characters without spacing.

If this was random text we would expect this value to be κrandom = 1/|A| = 0.037.

Before returning to our polyalphabetci cipher, let’s note that the index of coincedence or the κmonoalphabetic
is the same as plaintext. Why? Because the same letter frequency distribution holds, but permutated. The
index of coincidence is measuring the liklihood of a drawing two letters from the text and analyzing the
probability of a collision (equality). What was 20 Es are now 20 Qs (or some other letter.)

So, if we measure the index of coincidence of our polyalphabetic ciphertext by only looking at every
kth character, where k is a guess on the width of our key, we should see an index of coincedence emerging
that approaches our model for plaintext. All incorrect width guesses, while they may deviate from random,
should be distinct from the expected plaintext index of coincedence.

Width 1, has index of coincedence 0.039142

Width 2, has index of coincedence 0.041207

Width 3, has index of coincedence 0.039367

Width 4, has index of coincedence 0.041491

Width 5, has index of coincedence 0.053344

Width 6, has index of coincedence 0.041653

Width 7, has index of coincedence 0.040422

Width 8, has index of coincedence 0.044674

Width 9, has index of coincedence 0.038726

Width 10, has index of coincedence 0.073710

Width 11, has index of coincedence 0.041506

Width 12, has index of coincedence 0.041592

Width 13, has index of coincedence 0.042429

Width 14, has index of coincedence 0.043245

11

Width 15, has index of coincedence 0.055647

Width 16, has index of coincedence 0.044809

Width 17, has index of coincedence 0.042897

Width 18, has index of coincedence 0.043048

Width 19, has index of coincedence 0.044676

Width 20, has index of coincedence 0.073710

Width 21, has index of coincedence 0.041195

We definitely can see a highpoints at 10, and 20, and medium high points at 5 and 15. So, some experience
here might help. First we are examining a relatively small amount of ciphertext, 4096 characters. Given
sufficient data you expect to see the index of coincedence for the causal length appear at multiples.

Once we conclude that the width is 10, for each i = 1, . . . 10 we can look at the ith letter and every 10th

letter afterwards and do a frequency count on this column of letters. We only need to compute how much
the spike for E and - has shifted to compute the key value. This is a relative straightforward procedure.

Let’s think about how we might right a program to solve this type of cipher.

Let ct[4096] be an array of ciphertext bytes

Let A[27] be an array of counters A[0] = # of A’s, A[1] = # of B’s....

/* first find the width */

for(w=1;w<26;w++){

/* do a count on that width */

A[] = 0;

for(i=0;i<4096;i+=w) ++A[ct[i]];

/* compute the index of coincidence, ic */

for(i=0;i<27;i++) ic = ic + (A[i]/(4096/w))^2;

/* check to see if index of coindidence is close to expected */

if(|ic - 0.075844|< 0.01) break;

}

if(w==26) FAIL;

for(j=0;j<w;j++){

A[] = 0;

for(i=j;i<4096;i+=w) ++A[ct[i]];

/* compute the circuluar shift by where the ‘space’ peak is. */

Let key[j] = (26 - i) such that A[i] is maximum (space character)

}

/* compute the plaintext */

for(i=0;i<4096;i++) pt[i] = (ct[i] + k[i%w])%27;

print pt[];

How else might we have solved this?
What else could we do?

6 One-time Pad

A one-time pad is an additive key cipher in which the cryptographic key is effectively an infinite stream of
random characters which is added into the plaintext stream to create the ciphertext. This is often referred
to as the Vernam Cipher after the first to file a patent on the technique by Gilbert Vernam.

Definition 6.1. A one-time pad is a stream cipher in which the cryptographic key is an arbitrary length
strem of random characters which is combined with character-by-character with a plaintext stream to produce
a ciphertext stream.

Let’s stay in the alphabet we have been using, and suppose we are given the key:

CTOY AGTOGLWSGRSCHRYGM IGZSLGP RGHGDTPSLTASG PGDTOLSVTVZGCWSVGM IYGWHFSGXRSPSRRSYGL GLHDNCS

12

Well, when we could then encrypt a single message of the same or less length

TWO ROADS DIVEREGED IN A YELLOW WOOOD AND SORRY I COULD NOT TRAVEL BOTH AND BE ONE TRAVELER

+CTOY AGTOGLWSGRSCHRYGM IGZSLGP RGHGDTPSLTASG PGDTOLSVTVZGCWSVGM IYGWHFSGXRSPSRRSYGL GLHDNCS

==

VOBXQOGWFFODMKHWILUXOZZIFWWWRCVQBVURWOSYW JUQFDCANNFODYYTQORNXMUMIFXVYZFXDVOTVQFKKKSXLBHYGI

• random permutation for a polyalphabetic - still weak with enough plaintext

• infinite length codeword - this is actuall known as a one-time pad - it has the problem with how do
you distribute an infinite key?

In practice, we use something called a key stream generator, which takes a short cryptographic key, which
is used to generate a pseudo-random string of characters to combine with the plaintext.

7 Problem

Let’s define a new crypto-system that combines the transposition and a polyalphabetic cipher.

Question 7.1. Define our cipher to have the following parameters, (k, n, {pi}ni=1), where k is the length of
our vertical transposition, n is the block length of our polyalphabetic cipher, and pi are the n-many random
permutations on our plaintext alphabet. Further let’s assume that 1 < k ≤ 16, and 1 ≤ n ≤ 16. The cipher
operates on plaintext by first applying the transposition and then applying the polyalphabetic cipher.

1. How large is the keyspace?

2. Outline how you might attempt to breack this cipher?

8 Conclusion

We have seen a few cryptosystems as well as a few cryptanalytic attacks against those systems. It is worth
outlining what we have covered and what other areas of discovery you might find interesting.

The systems we have dicsussed are largely stream ciphers, where one character of the alphabet is enci-
phered at a time. While stream ciphers are still widely used in practice their use is problematic as additional
vulnerabilities occur from misuse. A good deal of research and standardization has occured to ensure that
stream ciphers can be used securely.

We did not discuss how to provide data-integrity, authentication and non-repudiation. A large family of
cryptographic techniques have been developed to provide these additional services. Some of these are:

• Cryptographic Hash Algorithms take an arbitrarily long input and create a fixed length digest (or hash
code) such that it is computationally infeasible to modify the input to produce the same digest. Hash
algorithms are used to provide data-integrity.

• Asymmetric Cryptographic Systems utilizes a pair of keys. A private key is kept secret to its owner,
and the public key is made widely avialble.

– The owner can digitally sign messages by which anyone with the public key can verify the message
as originating from the private key owner. This provides the security services of authentication,
data-integrity and non-repudiation.

– Any entity can encrypt a message for the owner of the private key, in which no other entity can
recover the plaintext message. This can be used to encrypt directly, but is more commonly used
to establish a shared key by which the rest of the message can be encrypted with a symmetric
cipher.

13

• Authenticated Key Establishment Schemes are used to securely established a shared session key be-
tween one or more parties. There are a variety of desirable security properties that pertain to key
establishment.

Cryptography relies on mathematics, and not merely on a narrow selection of mathematics but anywhere
in mathematics were so-called hard problems can be efficiently used, or computational methods can be derived
to break existing cryptographic systems.

9 Source Code

9.1 monoalphabetic.c

/∗
monoalphapet ic . c Example o f a monoalphabet ic encryp t ion .

Matthew J . Campagna
In t roduc t i on to Cryptography

30 August 2000

c l −o monoalphabet ic . exe monoalphabet ic . c

∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

#define KEYFILE argv [1]
#define INFILE argv [2]
#define OUTFILE argv [3]
#define ENCRYPT argv [4]

void usage ()
{

p r i n t f (”USAGE\n\ tmonoalphabet ic <k e y f i l e> < i n f i l e > <o u t f i l e > <encrypt>\n”) ;
p r i n t f (”\ t<k e y f i l e> key f i l e that s p e c i f i e s a permutation o f the a lphabet \n”) ;
p r i n t f (”\ t ABCDEFGHIJKLMNOPQRSTUVWXYZ\n”) ;
p r i n t f (”\ t< i n f i l e > the in f i l e to encrypt / decrypt \n”) ;
p r i n t f (”\ t<o u t f i l e > the out f i l e \n”) ;
p r i n t f (”\ t<encrypt> TRUE fo r encrypt , FALSE to decrypt \n”) ;

}

int main (int argc , char ∗∗ argv)
{

FILE ∗ fk , ∗ f i , ∗ f o ;
unsigned char key [2 7] , dkey [2 7] ;
int c , d , ki , d i r = 0 ;

i f (argc <5){
usage () ;
return 0 ;

}

14

fk = fopen (KEYFILE, ” rb”) ;
i f (! fk){

p r i n t f (”Error openning key f i l e : %d\n” , 1) ;
return 0 ;

}
f i = fopen (INFILE , ” rb”) ;
i f (! f i){

p r i n t f (”Error openning input f i l e : %d\n” , 2) ;
return 0 ;

}
f o = fopen (OUTFILE, ”wb+”) ;
i f (! f o){

p r i n t f (”Error openning output f i l e : %d\n” , 3) ;
return 0 ;

}

i f (strcmp (ENCRYPT, ”TRUE”)==0)
d i r = 1 ;

else
d i r = 0 ;

f r ead (key , 1 , 27 , fk) ;
/∗

i f we need to decryp t cons t ruc t the decryp t key
∗/
i f (d i r == 0){

for (k i =0; ki <26; k i++){
d = key [k i] ;
i f ((d>0x40) && (d<0x5B)) { d −= 0x41 ; }
else { d = 26 ; }
dkey [d] = k i+0x41 ;

}
d = key [2 6] ;
i f ((d>0x40) && (d<0x5B)) { d −= 0x41 ; }
else { d = 26 ; }
dkey [d] = 0x20 ;
memcpy(key , dkey , 2 7) ;

}
/∗

s t a r t encrypt / decryp t proces s
∗/
c = f g e t c (f i) ;
while (c != EOF){

i f ((c>0x40) && (c<0x5B)){
d = c − 0x41 ;

}
else {

d = 26 ;
}
d = key [d] ;
fputc (d , f o) ;
// p r i n t f (”%c ” , d) ;
c = f g e t c (f i) ;

}
return 0 ;

}

15

9.2 moncount.c

/∗
monocount . c This f i l e does a count o f cha rac t e r s from

a t e x t f i l e f o r s t a t i s t i c a l p r o p e r t i e s

Matthew J . Campagna
In t roduc t i on to Cryptography

30 August 2000

c l −o monocount . exe monocount . c

∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

#define INFILE argv [1]

int g e t n e x t l a r g e s t (int value , int ∗ counts) ;

void usage ()
{

p r i n t f (”USAGE\n\ tmonocount < i n f i l e > [f r equency]\n”) ;
p r i n t f (”\ t< i n f i l e > the in f i l e to perform charac t e r count\n”) ;

p r i n t f (”\ t [f r equency] a f requency count f o r p l a i n t e x t \n”) ;
}

int main (int argc , char ∗∗ argv)
{

FILE ∗ f i ;
int count [2 7] , c , t o ta l , i , j , value , idx , key [2 7] ;

char ∗ f r equency = NULL;
double d , i c = 0 ;

i f (argc <2){
usage () ;
return 0 ;

}
i f (argc==3){

f r equency = argv [2] ;
}

/∗
open input f i l e

∗/
f i = fopen (INFILE , ” r ”) ;
i f (! f i){

p r i n t f (”Error opening an input f i l e \n”) ;
return 0 ;

}
/∗

zero out count b u f f e r
∗/
memset (count , 0 , 27∗ s izeof (int)) ;
t o t a l = 0 ;

16

c = f g e t c (f i) ;
while (c != EOF){

/∗
i f t he charac t e r i s in our a l phabe t then
increment the count

∗/
i f (c==0x20){

count [26]++;
t o t a l++;

}
i f ((c>0x40) && (c<0x5B)){

count [c−0x41]++;
t o t a l++;

}
c = f g e t c (f i) ;

}
f c l o s e (f i) ;
/∗

p r i n t out the counts
∗/
for (i =0; i <26; i++){

p r i n t f (”%c %−7d ” , (char) (i+0x41) , count [i]) ;
i f (i%4==3)

p r i n t f (”\n”) ;
}
p r i n t f (”− %−7d\n\n” , count [i]) ;
/∗

ok now we have a f requency count , so we
need to ge t p r o b a b i l i t i e s , and s imu l t aneous l y b u i l d the index

o f inco inc idence
∗/
for (i =0; i <26; i++){

d = ((double) count [i] / (double) t o t a l) ;
p r i n t f (”%c %f ” , (char) (i+0x41) , d) ;
i f (i%4==3)

p r i n t f (”\n”) ;
i c +=(d∗d) ;
}

// i c = 27∗ i c ;
d = ((double) count [2 6] / (double) t o t a l) ;

i c += (d∗d) ;
p r i n t f (”− %f \n” , d) ;

p r i n t f (” Index o f Coincedence : %f \n\n” , i c) ;
/∗

sho r t p r i n t i n g
∗/
value = t o t a l ;
for (i =0; i <27; i++){

idx = ge tn e x t l a r g e s t (value , count) ;
p r i n t f (”%c ” , idx+0x41) ;

i f (f requency){
j = (int) f requency [i] − 0x41 ;
key [j] = (char) idx ;

}
value = count [idx] ;
count [idx]++;

}
p r i n t f (”\n”) ;

i f (f requency){

17

for (i =0; i <27; i++){
p r i n t f (”%c ” , key [i] + 0x41) ;

}
}
p r i n t f (”\n”) ;

return 0 ;
}

int g e t n e x t l a r g e s t (int value , int ∗ counts)
{

int cd i f , d i f , idx , i ;

d i f = value ;

for (i =0; i <27; i++){
c d i f = value − counts [i] ;
i f ((cd i f >=0) && (c d i f <= d i f)){

d i f = c d i f ;
idx = i ;

}
}
return idx ;

}

9.3 polyalphabetic.c

/∗
p o l y a l p h a b e t i c . c Example o f a p o l y a l p h a b e t i c encryp t ion .

Matthew J . Campagna
In t roduc t i on to Cryptography

30 August 2000

c l −o p o l y a l p h a b e t i c . exe p o l y a l p h a b e t i c . c

∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

#define KEYFILE argv [1]
#define INFILE argv [2]
#define OUTFILE argv [3]
#define ENCRYPT argv [4]

void usage ()
{

p r i n t f (”USAGE\n\ tpo l ya l phabe t i c <k e y f i l e> < i n f i l e > <o u t f i l e > <encrypt>\n”) ;
p r i n t f (”\ t<k e y f i l e> key f i l e that s p e c i f i e s a s t r i n g o f l ength n\n”) ;
p r i n t f (”\ t which s p e c i f i e s the key f o r Vigenere c iphe r \n”) ;
p r i n t f (”\ t us ing l e t t e r s ABCDEFGHIJKLMNOPQRSTUVWXYZ\n”) ;
p r i n t f (”\ t< i n f i l e > the in f i l e to encrypt / decrypt \n”) ;
p r i n t f (”\ t<o u t f i l e > the out f i l e \n”) ;
p r i n t f (”\ t<encrypt> TRUE fo r encrypt , FALSE to decrypt \n”) ;

18

}

int main (int argc , char ∗∗ argv)
{

FILE ∗ fk , ∗ f i , ∗ f o ;
char key [2 5 6] ;
int ki , keys i ze , c , d , k ;
int d i r = 0 ;

i f (argc <5){
usage () ;
return 0 ;

}

fk = fopen (KEYFILE, ” r ”) ;
f i = fopen (INFILE , ” r ”) ;
f o = fopen (OUTFILE, ”w+”) ;

i f (! fk | | ! f i | | ! f o){
p r i n t f (”Error opening an input f i l e \n”) ;
return 0 ;

}

i f (strcmp (ENCRYPT, ”TRUE”)==0)
d i r = 1 ;

else
d i r = 0 ;

k ey s i z e = f r ead (key , 1 , 256 , fk) ;

/∗ CONVERT KEY TO NUMERICAL VALUE ∗/
for (k i =0; ki<key s i z e ; k i++){

/∗ i f number then su b t r a c t ’A’ = 0x41∗/
i f (key [k i] !=0 x20)

key [k i] −= 0x41 ;
else /∗ e l s e we s e t i t to 26∗/

key [k i] = 26 ;
}

k i = 0 ;

while ((c = f g e t c (f i)) != EOF){
/∗

conver t the charac t e r to zero based i n t e g e r
∗/
i f (c != ’ ’) { d = (c − 0x41) ; }
else { d = 26 ; }

/∗
depending on the d i r e c t i o n add or s u b t r a c t

∗/
i f (d i r) { d = (d + key [k i]) % 27 ; }
else { d = (d − key [k i] + 27) % 27 ; }
/∗

conver t back to a a l phabe t charac t e r
∗/
i f (d==26) { d = ’ ’ ; }

19

else { d += 0x41 ; }
/∗

wr i t e out the charac t e r to the f i l e
∗/
fputc (d , f o) ;
/∗

advance the key
∗/
k i = (k i+1)%key s i z e ;

}
f c l o s e (fk) ;
f c l o s e (f i) ;
f c l o s e (f o) ;
return 0 ;

}

9.4 indexofc.c

/∗
i ndexo f c . c This program computes the index o f coincendence

on an input f i l e assuming a 27 charac t e r
a l phabe t [A−Z , ’ ’] .

Matthew J . Campagna
In t roduc t i on to Cryptography

30 August 2000

c l −o indexo f c . exe indexo f c . c
gcc −o indexo f c indexo f c . c

∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

#define MAXCOUNT (1<<16)
#define INFILE argv [1]

double r = 0 . 0370 ;
// doub le p = 0.0677 ;
double p = 0 . 0744 ;

void usage ()
{

p r i n t f (”USAGE\n\ t i ndexo f c < i n f i l e > <max−width>\n”) ;
p r i n t f (”\ t< i n f i l e > the in f i l e to perform monograph phi t e s t \n”) ;

p r i n t f (”\ t<max−width> the maximum width to examine to compute index o f co incedence \n”) ;
}

int main (int argc , char ∗∗ argv)
{

20

FILE ∗ f i ;
int count [2 7] , c , t o ta l , i , len , j , k ;
double d , i c ;

char bu f f e r [4 0 9 6] ;

i f (argc <3){
usage () ;
return 0 ;

}
/∗

open input f i l e
∗/

k = s t r t o u l (argv [2] , NULL, 1 0) ;
f i = fopen (INFILE , ” r ”) ;
i f (! f i){

p r i n t f (”Error opening an input f i l e \n”) ;
return 0 ;

}
/∗

zero out count b u f f e r
∗/ l en = f r ead (bu f f e r , 1 , 4096 , f i) ;

for (j =1; j<k ; j++){
memset (count , 0 , 27∗ s izeof (int)) ;
t o t a l = 0 ;
for (i =0; i<l en ; i+=j){

c = bu f f e r [i] ;
i f (c==0x20){

++count [2 6] ;
++t o t a l ;

}
i f ((c>0x40) && (c<0x5B)){

++count [c−0x41] ;
++t o t a l ;

}
}
i c = 0 ;
for (i =0; i <27; i++){

d = (double) count [i] / (double) t o t a l ;
i c += d∗d ;

}
p r i n t f (”Width %d , has index o f co incedence %f \n” , j , i c) ;

}
return 0 ;

}

9.5 polycrack.c

/∗
po l yc rack . c This program computes the index o f coincendence

on an input f i l e assuming a 27 charac t e r
a l phabe t [A−Z , ’ ’] , s e l e c t s the most l i k e l y , and
then computes the b e s t key va lue f o r t ha t width

Matthew J . Campagna
In t roduc t i on to Cryptography

21

30 August 2000

c l −o po l yc rack . exe po l yc rack . c
gcc −o po l yc rack po l yc rack . c

∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

#define MAXCOUNT (1<<16)
#define INFILE argv [1]

char KEY[] = ”BCDEFGHIJKLMNOPQRSTUVWXYZ A” ;

void usage ()
{

p r i n t f (”USAGE\n\ tpo lyc rack < i n f i l e > <max−width> [TRUE]\n”) ;
p r i n t f (”\ t< i n f i l e > the in f i l e to perform monograph phi t e s t \n”) ;

p r i n t f (”\ t<width> the maximum width to examine to compute index o f co incedence or the width on which to crack \n”) ;
p r i n t f (”\ t [TRUE] TRUE i f pre sent w i l l take the width as the value on which to guess the key .\n”) ;

}

int main (int argc , char ∗∗ argv)
{

FILE ∗ f i ;
int count [2 7] , c , t o ta l , i , len , j , k , sp , E ;
double d , i c ;

char bu f f e r [4 0 9 6] ;

i f (argc <3){
usage () ;
return 0 ;

}
/∗

open input f i l e
∗/

k = s t r t o u l (argv [2] , NULL, 1 0) ;
f i = fopen (INFILE , ” r ”) ;
i f (! f i){

p r i n t f (”Error opening an input f i l e \n”) ;
return 0 ;

}
/∗

zero out count b u f f e r
∗/ l en = f r ead (bu f f e r , 1 , 4096 , f i) ;

i f (argc==3){
for (j =1; j<k ; j++){

memset (count , 0 , 27∗ s izeof (int)) ;
t o t a l = 0 ;
for (i =0; i<l en ; i+=j){

c = bu f f e r [i] ;
i f (c==0x20){

++count [2 6] ;

22

++to t a l ;
}
i f ((c>0x40) && (c<0x5B)){

++count [c−0x41] ;
++t o t a l ;

}
}
i c = 0 ;
for (i =0; i <27; i++){

d = (double) count [i] / (double) t o t a l ;
i c += d∗d ;

}
p r i n t f (”Width %d , has index o f co incedence %f \n” , j , i c) ;

}
}
i f (argc > 3){

for (j =0; j<k ; j++){
memset (count , 0 , 27∗ s izeof (int)) ;
t o t a l = 0 ;
// f o r each character , do a count and see where ”−” and ”E” are
for (i=j ; i<l en ; i+=k){

c = bu f f e r [i] ;
i f (c==0x20){

++count [2 6] ;
++t o t a l ;

}
i f ((c>0x40) && (c<0x5B)){

++count [c−0x41] ;
++t o t a l ;

}
}
sp = 0 , E = 0 ;
for (i =1; i <27; i++){

i f (count [i]>count [sp]) {
E = sp ;
sp = i ;

}
}
p r i n t f (”(%c : %d , %d)\n” , KEY[sp] , E, sp) ;

}
p r i n t f (”\n”) ;

}
return 0 ;

}

23

