Group Theory I

UW Math Circle - Advanced Group

Session 14 (23 January 2014)

A binary operation * on a set S is called *commutative* if a * b = b * a for all $a, b \in S$ and associative if a * (b * c) = (a * b) * c for all $a, b, c \in S$.

A group is a **nonempty** set G with a **associative** binary operation * on G such that the following axioms are satisfied:

- **G1.** (Identity element) There exists an element $1 \in G$ such that for all $a \in G$, a * 1 = 1 * a = a.
- **G2.** (Inverse elements) For every $a \in G$ there exists an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = 1$.

If the operation * is **commutative**, then the group is called *commutative* or *abelian*.

Theorem 1 (Elementary properties of groups I). Let G be a group.

- 1. (Unique identity) A group contains exactly one identity element.
- 2. (Unique inverses) Every element of a group has exactly one inverse.
- 3. (Cancellation) If $a, b, c \in G$ and a * c = b * c or c * a = c * b, then a = b.

The notation a^n , where n is a positive integer, denotes $\underbrace{a * a * \cdots * a}_{n}$. If n is a negative integer,

$$a^n = (a^{-1})^{-n}$$
. Also, $a^0 = 1$.

Theorem 2 (Elementary properties of groups II). Let G be a group. Below we assume $a, b, c, d \in G$ and m, n are integers.

- 1. $a^m * a^n = a^{m+n}$.
- 2. $(a^m)^n = a^{mn}$.
- 3. $(a * b)^{-1} = b^{-1} * a^{-1}$.
- 4. $(a^n)^{-1} = (a^{-1})^n$.