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Let G be a group. We will no longer write ∗ for the operation, but write ab for a ∗ b.
For an element a ∈ G, consider the set ⟨a⟩ generated by a:

⟨a⟩ =
{
. . . , a−2, a−1, 1, a, a2, . . .

}
.

If ⟨a⟩ is a finite set, then its cardinality |⟨a⟩| is called the order of a in G, written |a|. Otherwise,
a has infinite order.

Theorem 3 (Elements with finite order). Let G be a group.

1. The order of an element a ∈ G is the least integer k > 0 such that ak = 1. If such k does not
exist, then x has infinite order.

2. If G is a finite group, then every element of G has finite order.

Note that the converse of (b) is not true: infinite groups can contain elements of finite order.
(In fact, in any group, |1| = 1.)

A subset H ⊆ G is a subgroup of G if H forms a group with the operation of G. We write
H < G.

Theorem 4. H is a subgroup of G if and only if

1. If a, b ∈ H, then ab ∈ H,

2. 1G ∈ H, and

3. If a ∈ H, then a−1 ∈ H.

Trivially, if H < G, then 1H = 1G.
The set ⟨a⟩ forms a group with operation of G. We call it the subgroup generated by a. If

|a| = k, then ⟨a⟩ is a cyclic subgroup of order k. It is identical to Zk, the group of integers modulo
k with addition.

Next, we classify the subgroups of Z.

Lemma 5 (Bézout). Let a, b ∈ Z. There exist m,n ∈ Z such that am+ bn = gcd(a, b).

Theorem 6. Every subgroup of Z is generated by one element – that is, it has the form ⟨n⟩ =
{. . . ,−2n,−n, 0, n, 2n, . . . }.

The subgroup ⟨n⟩ of Z can also be denoted by nZ.
We can list all the subgroups of Z: they are {0},Z, 2Z, 3Z, 4Z, . . . .
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