Group Theory II

UW Math Circle – Advanced Group

Session 15 (30 January 2014)

Let G be a group. We will no longer write * for the operation, but write ab for a * b. For an element $a \in G$, consider the set $\langle a \rangle$ generated by a:

$$\langle a \rangle = \{ \dots, a^{-2}, a^{-1}, 1, a, a^2, \dots \}.$$

If $\langle a \rangle$ is a finite set, then its cardinality $|\langle a \rangle|$ is called the *order* of a in G, written |a|. Otherwise, a has *infinite order*.

Theorem 3 (Elements with finite order). Let G be a group.

- 1. The order of an element $a \in G$ is the least integer k > 0 such that $a^k = 1$. If such k does not exist, then x has infinite order.
- 2. If G is a finite group, then every element of G has finite order.

Note that the converse of (b) is not true: infinite groups can contain elements of finite order. (In fact, in any group, |1| = 1.)

A subset $H \subseteq G$ is a *subgroup* of G if H forms a group with the operation of G. We write H < G.

Theorem 4. H is a subgroup of G if and only if

- 1. If $a, b \in H$, then $ab \in H$,
- 2. $1_G \in H$, and
- 3. If $a \in H$, then $a^{-1} \in H$.

Trivially, if H < G, then $1_H = 1_G$.

The set $\langle a \rangle$ forms a group with operation of G. We call it the subgroup generated by a. If |a| = k, then $\langle a \rangle$ is a cyclic subgroup of order k. It is identical to \mathbb{Z}_k , the group of integers modulo k with addition.

Next, we classify the subgroups of \mathbb{Z} .

Lemma 5 (Bézout). Let $a, b \in \mathbb{Z}$. There exist $m, n \in \mathbb{Z}$ such that am + bn = gcd(a, b).

Theorem 6. Every subgroup of \mathbb{Z} is generated by one element – that is, it has the form $\langle n \rangle = \{\dots, -2n, -n, 0, n, 2n, \dots\}$.

The subgroup $\langle n \rangle$ of \mathbb{Z} can also be denoted by $n\mathbb{Z}$.

We can list all the subgroups of \mathbb{Z} : they are $\{0\}, \mathbb{Z}, 2\mathbb{Z}, 3\mathbb{Z}, 4\mathbb{Z}, \ldots$