Functional equations

UW Math Circle - Advanced Group

Session 5 (24 October 2013)

- 1. (Moscow 1981) Suppose $f : \mathbb{R} \to \mathbb{R}$ satisfies f(x+k)(1-f(x)) = 1 + f(x) for all x, for some $k \neq 0$. Show that f is periodic.
- 2. A function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ satisfies f(xy) = f(x) + f(y) for all x and y. Given that f(2013) = 1, find $f(\frac{1}{2013})$.
- 3. (Canada 1969) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function with the following properties:
 - f(2) = 2;
 - f(mn) = f(m)f(n) for all m and n;
 - f(m) > f(n) whenever m > n.

Prove that f(n) = n for all n.

4. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $2f(x) + f(1-x) = x^2$ for all x. (Hint: Replace x with 1-x to obtain a linear system in the two variables f(x) and f(1-x).)