Functional equations

UW Math Circle - Advanced Group

Session 5 (24 October 2013)

1. (Moscow 1981) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(x+k)(1-f(x))=1+f(x)$ for all x, for some $k \neq 0$. Show that f is periodic.
2. A function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ satisfies $f(x y)=f(x)+f(y)$ for all x and y. Given that $f(2013)=1$, find $f\left(\frac{1}{2013}\right)$.
3. (Canada 1969) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function with the following properties:

- $f(2)=2$;
- $f(m n)=f(m) f(n)$ for all m and n;
- $f(m)>f(n)$ whenever $m>n$.

Prove that $f(n)=n$ for all n.
4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $2 f(x)+f(1-x)=x^{2}$ for all x. (Hint: Replace x with $1-x$ to obtain a linear system in the two variables $f(x)$ and $f(1-x)$.)

