UW Math Circle

January 16, 2014

1. What do you notice if you make the following reductions:

- $17 \equiv \ldots \bmod 3$
- $19 \equiv \ldots \bmod 3$
- $17+19 \equiv$ mod 3
- $2+1 \equiv _\bmod 3$
- $17 \cdot 19 \equiv$ mod 3
- $2 \cdot 1 \equiv$ — $\bmod 3$

2. Show that $n^{3}+2 n$ is divisible by 3 for any integer n.
3. In the faraway land of Moneytown, there are coins corresponding to each dollar amount: they have a $\$ 1$ coin, a $\$ 2$ coin, a $\$ 3$ coin, and so on. If a resident of Moneytown has $n+1$ coins, show that she has two coins whose difference is divisible by n.
4. Show that a number is divisible by 4 if and only if its last two digits are divisible by 4 .
5. What is the last digit of 2013^{2013} ? How about 2014^{2014} ?
6. When Peter broke his piggy bank, it contained no more than 100 coins. He divided coins into piles of 2 coins each, but was left with one extra coin. The same happened when Peter divided the coins into piles of 3 coins, piles of 4 coins, and piles of 5 coins. Each time he was left with one extra coin. How many coins were in the piggy bank?
7. A set of numbers (a, b, c) with $a^{2}+b^{2}=c^{2}$ is called a Pythagorean Triple.
(a) Show that in a Pythagorean triple, at least one of the numbers is divisible by 3.
(b) Show that in a Pythagorean triple, at least one of the numbers is divisible by 5.
