Problem Set 14

UW Math Circle

Session $\omega+25$ (7 May 2015)

1. Prove that a parallelogram cannot be cut into an odd number of triangles of equal area.
2. Show that the area of a polygon in the plane with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ is

$$
\left|\frac{1}{2}\left(\left(x_{1} y_{2}+x_{2} y_{3}+\cdots+x_{n-1} y_{n}+x_{n} y_{1}\right)-\left(x_{2} y_{1}+x_{3} y_{2}+\cdots+x_{n} y_{n-1}+x_{1} y_{n}\right)\right)\right| .
$$

(If you played "math contests", you may know this as the shoelace formula.)
3. (Moscow City 1992) Prove that in any centrally symmetric convex polygon one can inscribe a rhombus at least half the area of the polygon.

4. (MHO 2012) Katniss is thinking of a positive integer less than 100: call it x. Peeta is allowed to pick any two positive integers N and M, both less than 100, and Katniss will give him the greatest common divisor of $x+M$ and N. Peeta can do this up to seven times, after which he must name Katniss' number x, or he will die. Can Peeta ensure his survival?

