UW Math Circle

February 12, 2015

1. A tromino is an L-shaped piece, drawn below. Is it possible to cover an 8×8 chessboard with its upper left corner removed with trominoes? How about a 16×16 board with its upper left corner removed? $32 \times 32 ? 2^{n} \times 2^{n}$?

2. You are playing the game of 'The Towers of Hanoi'. It has three spindles on a base, with n rings on one of them. The rings are arranged in order of their size - from largest on the bottom to smallest on the top. It is permitted to move the highest (smallest) ring on any spindle onto another spindle, except that you cannot put a larger ring on top of a smaller one. Prove that:
(a) It is possible to move all the rings to one of the free spindles;
(b) You can do so using $2^{n}-1$ moves.
(c) It is not possible to do so using fewer moves.

UW Math Circle

February 12, 2015

1. Show that $1+3+5+\cdots+(2 n-1)=n^{2}$.
2. Prove that the number $111 \ldots 111\left(3^{n} 1\right.$'s) is divisible by 3^{n}.
3. Prove that the sum of degrees of the interior angles of an n-gon is $(n-2) 180$.

4. Prove that $7^{n}-1$ is a multiple of 6 for all positive integers n.
5. Find a formula for the number of ways to cover a $2 \times n$ chessboard with dominoes (so that each square is covered, and no dominoes overlap). Prove your formula is correct.
