UW Math Circle
 April 17, 2014

Instructions: Kristin forgot what numbers are, so she decided to make up her own. Here are some numbers she invented:

$$
123,32154,1423,312,2413,162543
$$

Steve decided to make up some numbers of his own, but Kristin told him that they don't count:

$$
22,243,35,541344,1337
$$

1. Which of these numbers count according to Kristin's definition of a number?
$615324,1327645,31514,12345,541,7,41532,3521,312,4132,13542,1,14263675$
2. (a) Write down all the one-digit numbers according to Kristin's rules. How many are there?
(b) Write down all the two-digit numbers according to Kristin's rules. How many are there?
(c) Write down all the three-digit numbers according to Kristin's rules. How many are there?
(d) Write down all the four-digit numbers according to Kristin's rules. How many are there?
(e) How many n-digit numbers are there according to Kristin's rules?
3. Next, Kristin made up rules for how to multiply two numbers together. Here are some of her results:

$$
\begin{aligned}
& 213 \cdot 321=231 \\
& 2143 \cdot 4321=3412 \\
& 21435 \cdot 54321=45231 \\
& 214356 \cdot 654321=563421 \\
& 2143567 \cdot 7654321=6745321 \\
& 21435678 \cdot 87654321=78564321
\end{aligned}
$$

$$
321 \cdot 213=312
$$

$$
4321 \cdot 2413=3142
$$

$$
54321 \cdot 13524=42531
$$

$$
654321 \cdot 234651=156432
$$

$$
7654321 \cdot 2543671=1763452
$$

$$
1324 \cdot 3421=3241
$$

$$
1324 \cdot 3412=3142
$$

$$
1324 \cdot 3142=3412
$$

$$
1324 \cdot 1342=1432
$$

$$
1324 \cdot 1324=1234
$$

$$
1324 \cdot 1432=1342
$$

$$
123 \cdot 123=123
$$

$$
123 \cdot 321=321
$$

$$
123 \cdot 231=231
$$

$$
132 \cdot 231=213
$$

$$
213 \cdot 213=123
$$

$$
213 \cdot 321=231
$$

$$
213 \cdot 123=213
$$

$$
321 \cdot 321=123
$$

$$
231 \cdot 231=312
$$

$$
231 \cdot 213=132
$$

$$
23145 \cdot 41253=12453
$$

$$
3761542 \cdot 2617534=1432576
$$

How would Kristin multiply these numbers:

$$
\begin{array}{r}
312 \cdot 132= \\
52143 \cdot 14235= \\
21 \cdot 21= \\
1347652 \cdot 3614527= \\
4321 \cdot 2341=
\end{array}
$$

4. Can you find a number so that

$$
\begin{aligned}
31425 \cdot _ & =12345 \\
-31425 & =12345
\end{aligned}
$$

5. Start with a deck of 12 cards numbered one through twelve. Now deal them out into a 3×4 grid by laying them out along the rows from top to bottom:

Finally, collect the cards column-by-column from left to right. So now the top three cards on the deck are $1,5,9$, followed by $2,6,10$, and so on. How many times will you have to repeat this process before the cards are back in their original order?

