UW Math Circle

April 30, 2015

1. Find $\operatorname{gcd}(12 n+1,30 n+2)$.
2. Find the last digit of $1^{2}+2^{2}+3^{2}+\cdots+99^{2}$.
3. For a number n, can the number n ! have exactly 5 zeros at the end of its decimal representation? What about 6 zeros?
4. Find $\operatorname{gcd}(111 \ldots 111,11 \ldots 11)$, where there are 100 1's in the first number and 60 1 's in the second.
5. Find all solutions to the equation $173 x+1990 y=11$.
6. If p and $p^{2}+2$ are prime numbers, show that $p^{3}+2$ is also a prime number.

7. Challenge: If $n=\frac{a}{b}$ for integers a and b, prove that the decimal representation of n either terminates or eventually repeats.
