UW Math Circle

October 23, 2014

1. Remember that $n!=1 \times 2 \times 3 \times \cdots \times n$, and $0!=1.10!=3628800$ ends with 2 zeroes. How many zeroes does 99 ! end with? How about 2015!?
2. When you add up all the digits of a number, you get what is called the digital sum of that number. For example, the digital sum of 345 is 12 . John wants to start with a number and repeatedly take its digital sum until he gets to just one digit. For example, if he started with 345 , he would get 3 . What would John get if he started with 23487^{2398} ?
3. Remember that a twin prime pair are prime numbers that differ by 2 , for example 11 and 13 . Except for 3 and 5, prove that the sum of any twin prime pair is divisible by 12 .
4. Can you find 10 composite numbers in a row? How about 100? 10000?
5. Come up with a divisibility rule for 13 , similar to the one we discussed for 7. Make sure it works by testing it on 3159 .

Done already? Try figuring out what's going on in this image.

