Halloween Math Auction

UW Math Circle
October ${ }_{\text {O. }}^{0} 2015$

1. On a 10×10 grid, place as many tokens as possible on the vertices such that no three tokens lie on the same line (that line doesn't have to be one of the grid lines).
2. Find the best approximation to π using the digits $0-9$ at most once each, as well as only the operations,,$+- \times, \div, \sqrt{ }$, and ! as often as you like.

3. Take a positive integer and repeatedly take the sum of the squares of its digits; this is called a decaying sequence. For example, the decaying sequence of 31 is $31 \rightarrow 9+1=$ $10 \rightarrow 1$ at which point it stops. Find $n<10000$ that produces the longest possible decaying sequence.
4. Take a chessboard, and glue the top to the bottom and the left edge to the right edge. This new chessboard is called a donut chessboard. Place as few knights as possible on a donut chessboard so that all the squares are attacked. A knight does not attack the square it stands on.

5. The figure below has 12 lines of length 3; 24 lines if we count going backwards as well. Label it with 9 distinct letters to get as many three letter words as possible.

