UW Math Circle November 19, 2015

Compute the following quantities.

1.	$13 \equiv \mod 4$
2.	$73 \equiv _ \mod{11}$
3.	$22 \equiv \mod 9$
4.	$15 \equiv _ \mod 6$
5.	$32 \equiv _ \mod 10$
6.	$4 \cdot 32 \equiv \mod{10}$
7.	$17 \equiv _ \mod 3$
8.	$19 \equiv _ \mod 3$
9.	$17+19 \equiv \underline{\qquad} \mod 3$
10.	$-4 \equiv _ \mod 3$
11.	$-21 \equiv \mod 5$
12.	$14 \equiv _ \mod 3$
13.	$27 \equiv \mod 4$
14.	$11 \equiv _ \mod 4$
15.	$5 \equiv _ \mod 4$
16.	$27 \cdot 11 \equiv \underline{\qquad} \mod 4$
17.	$27 \cdot 11 \cdot 5 \equiv \underline{\qquad} \mod 4$
18.	$n^2 + 2 \equiv \underline{\qquad} \mod n$
19.	$3(n+1) \equiv \mod n$
20.	$(2n+1)(n+2) \equiv \underline{\qquad} \mod n$

- 21. $2+4+6+\cdots+2n\equiv \mod n$
- 22. $1+2+3+\cdots+n\equiv \mod n$

UW Math Circle November 19, 2015

1. Show that $n^3 + 2n$ is divisible by 3 for any integer n.

2. Show that a number is divisible by 4 if and only if its last two digits are divisible by 4.

3. Develop a rule for deciding if a number is divisible by 7.

4. What is the last digit of 2013^{2013} ? How about 2014^{2014} ?

5. When Peter broke his piggy bank, it contained no more than 100 coins. He divided coins into piles of 2 coins each, but was left with one extra coin. The same happened when Peter divided the coins into piles of 3 coins, piles of 4 coins, and piles of 5 coins. Each time he was left with one extra coin. How many coins were in the piggy bank?

