UW Math Circle

November 19, 2015

Compute the following quantities.

1. $13 \equiv$ \qquad $\bmod 4$
2. $73 \equiv$ \qquad $\bmod 11$
3. $22 \equiv$ \qquad $\bmod 9$
4. $15 \equiv$ \qquad $\bmod 6$
5. $32 \equiv$ \qquad $\bmod 10$
6. $4 \cdot 32 \equiv$ \qquad $\bmod 10$
7. $17 \equiv$ \qquad $\bmod 3$
8. $19 \equiv$ \qquad $\bmod 3$
9. $17+19 \equiv$ \qquad $\bmod 3$
10. $-4 \equiv$ \qquad mod 3
11. $-21 \equiv$ \qquad $\bmod 5$
12. $14 \equiv$ \qquad $\bmod 3$
13. $27 \equiv$ \qquad $\bmod 4$
14. $11 \equiv$ \qquad $\bmod 4$
15. $5 \equiv$ \qquad $\bmod 4$
16. $27 \cdot 11 \equiv$ \qquad $\bmod 4$
17. $27 \cdot 11 \cdot 5 \equiv$ \qquad $\bmod 4$
18. $n^{2}+2 \equiv$ \qquad $\bmod n$
19. $3(n+1) \equiv$ \qquad $\bmod n$
20. $(2 n+1)(n+2) \equiv$ \qquad $\bmod n$
21. $2+4+6+\cdots+2 n \equiv$ \qquad $\bmod n$
22. $1+2+3+\cdots+n \equiv$ \qquad $\bmod n$

UW Math Circle

November 19, 2015

1. Show that $n^{3}+2 n$ is divisible by 3 for any integer n.
2. Show that a number is divisible by 4 if and only if its last two digits are divisible by 4 .
3. Develop a rule for deciding if a number is divisible by 7 .
4. What is the last digit of 2013^{2013} ? How about 2014^{2014} ?
5. When Peter broke his piggy bank, it contained no more than 100 coins. He divided coins into piles of 2 coins each, but was left with one extra coin. The same happened when Peter divided the coins into piles of 3 coins, piles of 4 coins, and piles of 5 coins. Each time he was left with one extra coin. How many coins were in the piggy bank?

