UW Math Circle April 21, 2016 Homework

1. We saw in class that $3^4 \equiv 1 \pmod{5}$, so $3^5 \equiv 3 \pmod{5}$. Check yourself that $2^7 \equiv 2 \pmod{7}$ and that $3^{11} \equiv 3 \pmod{11}$. (That last one might take a calculator- go check!) At the same time, 3^6 is not equivalent to 3 modulo 6.

Your task is to show that if p is a prime number, then $a^p \equiv a \pmod{p}$. Here is an outline:

- (a) First, prove that $(a+1)^p = a^p + {p \choose 1} a^{p-1} + {p \choose 2} a^{p-2} + \cdots {p \choose p-1} a + 1$. Remember that ${a \choose b}$ is the number of ways to choose b things from a things, and that we have a nice formula for it: ${a \choose b} = \frac{a!}{b!(a-b)!}$.
- (b) Now use induction to show that $a^p \equiv a \pmod{p}$. The base case is a = 1and indeed $1^p \equiv 1 \pmod{p}$. Now, suppose that $a^p \equiv a \pmod{p}$, and consider $(a+1)^p$, and use the previous problem to write $(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \cdots \binom{p}{p-1}a + 1$. Use the fact that p is prime to say that $a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \cdots \binom{p}{p-1}a + 1 \equiv a^p + 1 \pmod{p}$, and then use your inductive hypothesis.

2. Use the previous problem to show that if p doesn't evenly divide a, then $a^{p-1} \equiv 1 \pmod{p}$. Hint: Remember our criteria from class for when $ax \equiv 1 \pmod{n}$ has a solution.

- 3. Use the previous problem to solve the following problems:
 - (a) What is $3^{31} \equiv ? \pmod{7}$?
 - (b) If $N = 2008^2 + 2^{2008}$, what is the units digit of $N^2 + 2^N$? (ie what is $N^2 + 2^N \mod 10$?)
 - (c) What is $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60}$ modulo 7?