UW Math Circle

April 21, 2016
Homework

1. We saw in class that $3^{4} \equiv 1(\bmod 5)$, so $3^{5} \equiv 3(\bmod 5)$. Check yourself that $2^{7} \equiv 2$ $(\bmod 7)$ and that $3^{11} \equiv 3(\bmod 11)$. (That last one might take a calculator- go check!) At the same time, 3^{6} is not equivalent to 3 modulo 6 .

Your task is to show that if p is a prime number, then $a^{p} \equiv a(\bmod p)$. Here is an outline:
(a) First, prove that $(a+1)^{p}=a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+\cdots\binom{p}{p-1} a+1$. Remember that $\binom{a}{b}$ is the number of ways to choose b things from a things, and that we have a nice formula for it: $\binom{a}{b}=\frac{a!}{b!(a-b)!}$.
(b) Now use induction to show that $a^{p} \equiv a(\bmod p)$. The base case is $a=1-$ and indeed $1^{p} \equiv 1(\bmod p)$. Now, suppose that $a^{p} \equiv a(\bmod p)$, and consider $(a+1)^{p}$, and use the previous problem to write $(a+1)^{p}=a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+$ $\cdots\binom{p}{p-1} a+1$. Use the fact that p is prime to say that $a^{p}+\binom{p}{1} a^{p-1}+\binom{p}{2} a^{p-2}+$ $\cdots\binom{p}{p-1} a+1 \equiv a^{p}+1(\bmod p)$, and then use your inductive hypothesis.
2. Use the previous problem to show that if p doesn't evenly divide a, then $a^{p-1} \equiv 1$ $(\bmod p)$. Hint: Remember our criteria from class for when $a x \equiv 1(\bmod n)$ has a solution.
3. Use the previous problem to solve the following problems:
(a) What is $3^{31} \equiv$? $(\bmod 7)$?
(b) If $N=2008^{2}+2^{2008}$, what is the units digit of $N^{2}+2^{N}$? (ie what is $N^{2}+2^{N}$ modulo 10?)
(c) What is $2^{20}+3^{30}+4^{40}+5^{50}+6^{60}$ modulo 7 ?

